大家好,欢迎来到IT知识分享网。
环境搭建
$ sudo apt-get install build-essential
安装OpenGL Library
$ sudo apt-get install libgl1-mesa-dev
安装OpenGL Utilities
$ sudo apt-get install libglu1-mesa-dev
OpenGL Utilities 是一组建构于 OpenGL Library 之上的工具组,提供许多很方便的函式,使 OpenGL 更强大且更容易使用。
安装OpenGL Utility Toolkit
$ sudo apt-get install libglut-dev
Reading package lists... Done Building dependency tree Reading state information... Done E: Unable to locate package libglut-dev
将上述
$ sudo apt-get install libglut-dev
命令改成
$ sudo apt-get install freeglut3-dev
#include <GL/glut.h> void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glRectf(-0.5f, -0.5f, 0.5f, 0.5f); glFlush(); } int main(int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE); glutInitWindowPosition(100, 100); glutInitWindowSize(400, 400); glutCreateWindow("第一个OpenGL程序"); glutDisplayFunc(&myDisplay); glutMainLoop(); return 0; }
编译
$ gcc -o test test.c -lGL -lGLU -lglut
该程序的作用是在一个黑色的窗口中央画一个白色的矩形。下面对各行语句进行说明。
首先,需要包含头文件#include <GL/glut.h>,这是GLUT的头文件。
本来OpenGL程序一般还要包含<GL/gl.h>和<GL/glu.h>,但GLUT的头文件中已经自动将这两个文件包含了,不必再次包含。
1、glutInit,对GLUT进行初始化,这个函数必须在其它的GLUT使用之前调用一次。其格式比较死板,一般照抄这句glutInit(&argc, argv)就可以了。
2、 glutInitDisplayMode,设置显示方式,其中GLUT_RGB表示使用RGB颜色,与之对应的还有GLUT_INDEX(表示使用索引颜色)。GLUT_SINGLE表示使用单缓冲,与之对应的还有GLUT_DOUBLE(使用双缓冲)。更多信息,请自己Google。当然以后的教程也会有一些讲解。
3、glutInitWindowPosition,这个简单,设置窗口在屏幕中的位置。
4、glutInitWindowSize,这个也简单,设置窗口的大小。
5、glutCreateWindow,根据前面设置的信息创建窗口。参数将被作为窗口的标题。注意:窗口被创建后,并不立即显示到屏幕上。需要调用glutMainLoop才能看到窗口。
6、glutDisplayFunc,设置一个函数,当需要进行画图时,这个函数就会被调用。(这个说法不够准确,但准确的说法可能初学者不太好理解,暂时这样说吧)。
7、glutMainLoop,进行一个消息循环。(这个可能初学者也不太明白,现在只需要知道这个函数可以显示窗口,并且等待窗口关闭后才会返回,这就足够了。)
在glutDisplayFunc函数中,我们设置了“当需要画图时,请调用myDisplay函数”。于是myDisplay函数就用来画图。观察myDisplay中的三个函数调用,发现它们都以gl开头。这种以gl开头的函数都是OpenGL的标准函数,下面对用到的函数进行介绍。
1、glClear,清除。GL_COLOR_BUFFER_BIT表示清除颜色,glClear函数还可以清除其它的东西,但这里不作介绍。
2、glRectf,画一个矩形。四个参数分别表示了位于对角线上的两个点的横、纵坐标。
3、glFlush,保证前面的OpenGL命令立即执行(而不是让它们在缓冲区中等待)。其作用跟fflush(stdout)类似。
OpenGL入门学习[二]
本次课程所要讲的是绘制简单的几何图形,在实际绘制之前,让我们先熟悉一些概念。
点、直线和多边形
我们知道数学(具体的说,是几何学)中有点、直线和多边形的概念,但这些概念在计算机中会有所不同。数学上的点,只有位置,没有大小。但在计算机中,无论计算精度如何提高,始终不能表示一个无穷小的点。另一方面,无论图形输出设备(例如,显示器)如何精确,始终不能输出一个无穷小的点。一般情况下,OpenGL中的点将被画成单个的像素(像素的概念,请自己搜索之~),虽然它可能足够小,但并不会是无穷小。同一像素上,OpenGL可以绘制许多坐标只有稍微不同的点,但该像素的具体颜色将取决于OpenGL的实现。当然,过度的注意细节就是钻牛角尖,我们大可不必花费过多的精力去研究“多个点如何画到同一像素上”。同样的,数学上的直线没有宽度,但OpenGL的直线则是有宽度的。同时,OpenGL的直线必须是有限长度,而不是像数学概念那样是无限的。可以认为,OpenGL的“直线”概念与数学上的“线段”接近,它可以由两个端点来确定。多边形是由多条线段首尾相连而形成的闭合区域。OpenGL规定,一个多边形必须是一个“凸多边形”(其定义为:多边形内任意两点所确定的线段都在多边形内,由此也可以推导出,凸多边形不能是空心的)。多边形可以由其边的端点(这里可称为顶点)来确定。(注意:如果使用的多边形不是凸多边形,则最后输出的效果是未定义的——OpenGL为了效率,放宽了检查,这可能导致显示错误。要避免这个错误,尽量使用三角形,因为三角形都是凸多边形)
可以想象,通过点、直线和多边形,就可以组合成各种几何图形。甚至于,你可以把一段弧看成是很多短的直线段相连,这些直线段足够短,以至于其长度小于一个像素的宽度。这样一来弧和圆也可以表示出来了。通过位于不同平面的相连的小多边形,我们还可以组成一个“曲面”。
在OpenGL中指定顶点
glVertex2d glVertex2f glVertex3f glVertex3fv
这些函数除了参数的类型和个数不同以外,功能是相同的。例如,以下五个代码段的功能是等效的:
(一)glVertex2i(1, 3); (二)glVertex2f(1.0f, 3.0f); (三)glVertex3f(1.0f, 3.0f, 0.0f); (四)glVertex4f(1.0f, 3.0f, 0.0f, 1.0f); (五)GLfloat VertexArr3[] = {
1.0f, 3.0f, 0.0f}; glVertex3fv(VertexArr3);
以后我们将用glVertex*来表示这一系列函数。
- 注意:OpenGL的很多函数都是采用这样的形式,一个相同的前缀再加上参数说明标记,这一点会随着学习的深入而有更多的体会。
开始绘制
glBegin(GL_POINTS); glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.0f); glEnd();
这里是对每种图形进行测试
我并不准备在glBegin的各种方式上大作文章。大家可以自己尝试改变glBegin的方式和顶点的位置,生成一些有趣的图案。
void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glBegin( /* 在这里填上你所希望的模式 */ ); /* 在这里使用glVertex*系列函数 */ /* 指定你所希望的顶点位置 */ glEnd(); glFlush(); }
例一、画一个圆
#include <math.h> const int n = 20; const GLfloat R = 0.5f; const GLfloat Pi = 3.f; void myDisplay(void) { int i; glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_POLYGON); for(i=0; i<n; ++i) glVertex2f(R*cos(2*Pi/n*i), R*sin(2*Pi/n*i)); glEnd(); glFlush(); }
编译命令:
$ gcc -o test test.c -lGL -lGLU -lglut -lm
生成图形:
例二、画一个五角星
首先,根据余弦定理列方程,计算五角星的中心到顶点的距离a (为什么这么计算我想了很久都无法想通,高中的数学喂狗了!!TODO)
a = 1 / (2-2*cos(72*Pi/180));
bx = a * cos(18 * Pi/180); by = a * sin(18 * Pi/180); cy = -a * cos(18 * Pi/180);
五个点的坐标就可以通过以上四个量和一些常数简单的表示出来
#include <math.h> const GLfloat Pi = 3.f; void myDisplay(void) { GLfloat a = 1 / (2-2*cos(72*Pi/180)); GLfloat bx = a * cos(18 * Pi/180); GLfloat by = a * sin(18 * Pi/180); GLfloat cy = -a * cos(18 * Pi/180); GLfloat PointA[2] = { 0, a }, PointB[2] = { bx, by }, PointC[2] = { 0.5, cy }, PointD[2] = { -0.5, cy }, PointE[2] = { -bx, by }; glClear(GL_COLOR_BUFFER_BIT); // 按照A->C->E->B->D->A的顺序,可以一笔将五角星画出 glBegin(GL_LINE_LOOP); glVertex2fv(PointA); glVertex2fv(PointC); glVertex2fv(PointE); glVertex2fv(PointB); glVertex2fv(PointD); glEnd(); glFlush(); }
例三、画出正弦函数的图形
#include <math.h> const GLfloat factor = 0.1f; void myDisplay(void) { GLfloat x; glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_LINES); glVertex2f(-1.0f, 0.0f); glVertex2f(1.0f, 0.0f); // 以上两个点可以画x轴 glVertex2f(0.0f, -1.0f); glVertex2f(0.0f, 1.0f); // 以上两个点可以画y轴 glEnd(); glBegin(GL_LINE_STRIP); for(x=-1.0f/factor; x<1.0f/factor; x+=0.01f) { glVertex2f(x*factor, sin(x)*factor); } glEnd(); glFlush(); }
OpenGL入门学习[三]
关于点
点的大小默认为1个像素,但也可以改变之。改变的命令为glPointSize,其函数原型如下:
void glPointSize(GLfloat size);
size必须大于0.0f,默认值为1.0f,单位为“像素”。
注意:对于具体的OpenGL实现,点的大小都有个限度的,如果设置的size超过最大值,则设置可能会有问题。
例子:
void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glPointSize(5.0f); glBegin(GL_POINTS); glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.5f); glEnd(); glFlush(); }
关于直线
(1)直线可以指定宽度:
void glLineWidth(GLfloat width);
void glLineStipple(GLint factor, GLushort pattern);
void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_LINE_STIPPLE); glLineStipple(2, 0x0F0F); glLineWidth(10.0f); glBegin(GL_LINES); glVertex2f(0.0f, 0.0f); glVertex2f(0.5f, 0.5f); glEnd(); glFlush(); }
关于这个这里介绍的还不是很详细,可以看博文:opengl 直线的线型(各种虚线)
关于多边形
glPolygonMode(GL_FRONT, GL_FILL); // 设置正面为填充方式 glPolygonMode(GL_BACK, GL_LINE); // 设置反面为边缘绘制方式 glPolygonMode(GL_FRONT_AND_BACK, GL_POINT); // 设置两面均为顶点绘制方式
glFrontFace(GL_CCW); // 设置CCW方向为“正面”,CCW即CounterClockWise,逆时针 glFrontFace(GL_CW); // 设置CW方向为“正面”,CW即ClockWise,顺时针
下面是一个示例程序,请用它替换第一课中的myDisplay函数,并将glFrontFace(GL_CCW)修改为glFrontFace(GL_CW),并观察结果的变化。
void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glPolygonMode(GL_FRONT, GL_FILL); // 设置正面为填充模式 glPolygonMode(GL_BACK, GL_LINE); // 设置反面为线形模式 glFrontFace(GL_CCW); // 设置逆时针方向为正面 glBegin(GL_POLYGON); // 按逆时针绘制一个正方形,在左下方 glVertex2f(-0.5f, -0.5f); glVertex2f(0.0f, -0.5f); glVertex2f(0.0f, 0.0f); glVertex2f(-0.5f, 0.0f); glEnd(); glBegin(GL_POLYGON); // 按顺时针绘制一个正方形,在右上方 glVertex2f(0.0f, 0.0f); glVertex2f(0.0f, 0.5f); glVertex2f(0.5f, 0.5f); glVertex2f(0.5f, 0.0f); glEnd(); glFlush(); }
将glFrontFace(GL_CCW)修改为glFrontFace(GL_CW)之后运行结果:
首先,使用glEnable(GL_CULL_FACE);来启动剔除功能(使用glDisable(GL_CULL_FACE)可以关闭之)
然后,使用glCullFace来进行剔除。
glCullFace的参数可以是GL_FRONT,GL_BACK或者GL_FRONT_AND_BACK,分别表示剔除正面、剔除反面、剔除正反两面的多边形。
注意:剔除功能只影响多边形,而对点和直线无影响。例如,使用glCullFace(GL_FRONT_AND_BACK)后,所有的多边形都将被剔除,所以看见的就只有点和直线。
(4)镂空多边形
直线可以被画成虚线,而多边形则可以进行镂空。
首先,使用glEnable(GL_POLYGON_STIPPLE);来启动镂空模式(使用glDisable(GL_POLYGON_STIPPLE)可以关闭之)。
然后,使用glPolygonStipple来设置镂空的样式。
void glPolygonStipple(const GLubyte *mask);
其中的参数mask指向一个长度为128字节的空间,它表示了一个32*32的矩形应该如何镂空。其中:第一个字节表示了最左下方的从左到右(也可以是从右到左,这个可以修改)8个像素是否镂空(1表示不镂空,显示该像素;0表示镂空,显示其后面的颜色),最后一个字节表示了最右上方的8个像素是否镂空。
但是,如果我们直接定义这个mask数组,像这样:
static GLubyte Mask[128] = { 0x00, 0x00, 0x00, 0x00, // 这是最下面的一行 0x00, 0x00, 0x00, 0x00, 0x03, 0x80, 0x01, 0xC0, // 麻 0x06, 0xC0, 0x03, 0x60, // 烦 0x04, 0x60, 0x06, 0x20, // 的 0x04, 0x30, 0x0C, 0x20, // 初 0x04, 0x18, 0x18, 0x20, // 始 0x04, 0x0C, 0x30, 0x20, // 化 0x04, 0x06, 0x60, 0x20, // , 0x44, 0x03, 0xC0, 0x22, // 不 0x44, 0x01, 0x80, 0x22, // 建 0x44, 0x01, 0x80, 0x22, // 议 0x44, 0x01, 0x80, 0x22, // 使 0x44, 0x01, 0x80, 0x22, // 用 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22, 0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC, 0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30, 0x07, 0xE1, 0x87, 0xE0, 0x03, 0x3F, 0xFC, 0xC0, 0x03, 0x31, 0x8C, 0xC0, 0x03, 0x3F, 0xFC, 0xC0, 0x06, 0x64, 0x26, 0x60, 0x0C, 0xCC, 0x33, 0x30, 0x18, 0xCC, 0x33, 0x18, 0x10, 0xC4, 0x23, 0x08, 0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0C, 0x08, 0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08 // 这是最上面的一行 };
这样一堆数据非常缺乏直观性,我们需要很费劲的去分析,才会发现它表示的竟然是一只苍蝇。如果将这样的数据保存成图片,并用专门的工具进行编辑,显然会方便很多。下面介绍如何做到这一点。
首先,用Windows自带的画笔程序新建一副图片,取名为mask.bmp,注意保存时,应该选择“单色位图”。在“图象”->“属性”对话框中,设置图片的高度和宽度均为32。
用放大镜观察图片,并编辑之。黑色对应二进制零(镂空),白色对应二进制一(不镂空),编辑完毕后保存。
然后,就可以使用以下代码来获得这个Mask数组了。
static GLubyte Mask[128]; FILE *fp; fp = fopen("mask.bmp", "rb"); if( !fp ) exit(0); // 移动文件指针到这个位置,使得再读sizeof(Mask)个字节就会遇到文件结束 // 注意-(int)sizeof(Mask)虽然不是什么好的写法,但这里它确实是正确有效的 // 如果直接写-sizeof(Mask)的话,因为sizeof取得的是一个无符号数,取负号会有问题 if( fseek(fp, -(int)sizeof(Mask), SEEK_END) ) exit(0); // 读取sizeof(Mask)个字节到Mask if( !fread(Mask, sizeof(Mask), 1, fp) ) exit(0); fclose(fp);
#include <stdio.h> #include <stdlib.h> void myDisplay(void) { static GLubyte Mask[128]; FILE *fp; fp = fopen("mask.bmp", "rb"); if( !fp ) exit(0); if( fseek(fp, -(int)sizeof(Mask), SEEK_END) ) exit(0); if( !fread(Mask, sizeof(Mask), 1, fp) ) exit(0); fclose(fp); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_POLYGON_STIPPLE); glPolygonStipple(Mask); glRectf(-0.5f, -0.5f, 0.0f, 0.0f); // 在左下方绘制一个有镂空效果的正方形 glDisable(GL_POLYGON_STIPPLE); glRectf(0.0f, 0.0f, 0.5f, 0.5f); // 在右上方绘制一个无镂空效果的正方形 glFlush(); }
OpenGL入门学习[四]
RGBA颜色
例如:
void glColor3f(GLfloat red, GLfloat green, GLfloat blue); void glColor4f(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha);
(还记得吗?3f表示有三个浮点参数~请看第二课中关于glVertex*函数的叙述。)
将浮点数作为参数,其中0.0表示不使用该种颜色,而1.0表示将该种颜色用到最多。例如:
glColor3f(1.0f, 0.0f, 0.0f); 表示不使用绿、蓝色,而将红色使用最多,于是得到最纯净的红色。
glColor3f(0.0f, 1.0f, 1.0f); 表示使用绿、蓝色到最多,而不使用红色。混合的效果就是浅蓝色。
glColor3f(0.5f, 0.5f, 0.5f); 表示各种颜色使用一半,效果为灰色。
注意:浮点数可以精确到小数点后若干位,这并不表示计算机就可以显示如此多种颜色。实际上,计算机可以显示的颜色种数将由硬件决定。如果OpenGL找不到精确的颜色,会进行类似“四舍五入”的处理。
大家可以通过改变下面代码中glColor3f的参数值,绘制不同颜色的矩形。
void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glColor3f(0.0f, 1.0f, 1.0f); glRectf(-0.5f, -0.5f, 0.5f, 0.5f); glFlush(); }
注意:glColor系列函数,在参数类型不同时,表示“最大”颜色的值也不同。
索引颜色
选择颜色
使用glIndex*系列函数可以在颜色表中选择颜色。其中最常用的可能是glIndexi,它的参数是一个整形。
void glIndexi(GLint c);
是的,这的确很简单。
设置颜色表
OpenGL 并没有直接提供设置颜色表的方法,因此设置颜色表需要使用操作系统的支持。原文的例子是在windows下设置颜色表,这里略过。
指定清除屏幕用的颜色
void myDisplay(void) { glClearColor(1.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glFlush(); }
呵,这个还真简单~
指定着色模型
OpenGL允许为同一多边形的不同顶点指定不同的颜色。例如:
#include <math.h> const GLdouble Pi = 3.; void myDisplay(void) { int i; // glShadeModel(GL_FLAT); glClear(GL_COLOR_BUFFER_BIT); glBegin(GL_TRIANGLE_FAN); glColor3f(1.0f, 1.0f, 1.0f); glVertex2f(0.0f, 0.0f); for(i=0; i<=8; ++i) { glColor3f(i&0x04, i&0x02, i&0x01); glVertex2f(cos(i*Pi/4), sin(i*Pi/4)); } glEnd(); glFlush(); }
glShadeModel(GL_SMOOTH); // 平滑方式,这也是默认方式 glShadeModel(GL_FLAT); // 单色方式
OpenGL入门学习[五]
在前面绘制几何图形的时候,大家是否觉得我们绘图的范围太狭隘了呢?坐标只能从-1到1,还只能是X轴向右,Y轴向上,Z轴垂直屏幕。这些限制给我们的绘图带来了很多不便。
我们生活在一个三维的世界——如果要观察一个物体,我们可以:
这些,都可以在OpenGL中实现。
模型变换和视图变换
glMatrixMode(GL_MODELVIEW);
通常,我们需要在进行变换前把当前矩阵设置为单位矩阵。这也只需要一行代码:
glLoadIdentity();
然后,就可以进行 模型变换和视图变换了。进行模型和视图变换,主要涉及到三个函数:
以上都是针对改变物体的位置和方向来介绍的。如果要改变观察点的位置,除了配合使用glRotate*和glTranslate*函数以外,还可以使用这个函数:gluLookAt。它的参数比较多,前三个参数表示了观察点的位置,中间三个参数表示了观察目标的位置,最后三个参数代表从(0,0,0)到 (x,y,z)的直线,它表示了观察者认为的“上”方向。
投影变换
glMatrixMode(GL_PROJECTION);
通常,我们需要在进行变换前把当前矩阵设置为单位矩阵。
glLoadIdentity();
正投影相当于在无限远处观察得到的结果,它只是一种理想状态。但对于计算机来说,使用正投影有可能获得更好的运行速度。使用glOrtho函数可以将当前的可视空间设置为正投影空间。
如果绘制的图形空间本身就是二维的,可以使用gluOrtho2D。他的使用类似于glOrgho。
视口变换
操作矩阵堆栈
注意:模型视图矩阵和投影矩阵都有相应的堆栈。使用glMatrixMode来指定当前操作的究竟是模型视图矩阵还是投影矩阵。
综合举例
好了,视图变换的入门知识差不多就讲完了。但我们不能就这样结束。因为本次课程的内容实在过于枯燥,如果分别举例,可能效果不佳。我只好综合的讲一个例子,算是给大家一个参考。至于实际的掌握,还要靠大家自己花功夫。闲话少说,现在进入正题。
我们要制作的是一个三维场景,包括了太阳、地球和月亮。假定一年有12个月,每个月30天。每年,地球绕着太阳转一圈。每个月,月亮围着地球转一圈。即一年有360天。
现在给出日期的编号(0~359),要求绘制出太阳、地球、月亮的相对位置示意图。(这是为了编程方便才这样设计的。如果需要制作更现实的情况,那也只是一些数值处理而已,与OpenGL关系不大)
首先,让我们认定这三个天体都是球形,且他们的运动轨迹处于同一水平面,建立以下坐标系:太阳的中心为原点,天体轨迹所在的平面表示了X轴与Y轴决定的平面,且每年第一天,地球在X轴正方向上,月亮在地球的正X轴方向。
下一步是确立可视空间。注意:太阳的半径要比太阳到地球的距离短得多。如果我们直接使用天文观测得到的长度比例,则当整个窗口表示地球轨道大小时,太阳的大小将被忽略。因此,我们只能成倍的放大几个天体的半径,以适应我们观察的需要。(百度一下,得到太阳、地球、月亮的大致半径分别是:km,6378km,1738km。地球到太阳的距离约为1.5亿km=km,月亮到地球的距离约为km。)
让我们假想一些数据,将三个天体的半径分别“修改”为:(放大100倍),(放大2500倍),(放大2500倍)。将地球到月亮的距离“修改”为(放大100倍)。地球到太阳的距离保持不变。
为了让地球和月亮在离我们很近时,我们仍然不需要变换观察点和观察方向就可以观察它们,我们把观察点放在这个位置:(0, -, 0) ——因为地球轨道半径为,咱们就凑个整,取-就可以了。观察目标设置为原点(即太阳中心),选择Z轴正方向作为 “上”方。当然我们还可以把观察点往“上”方移动一些,得到(0, -, ),这样可以得到45度角的俯视效果。
为了得到透视效果,我们使用gluPerspective来设置可视空间。假定可视角为60度(如果调试时发现该角度不合适,可修改之。我在最后选择的数值是75。)高宽比为1.0。最近可视距离为1.0,最远可视距离为*2=。即:gluPerspective (60, 1, 1, );现在我们来看看如何绘制这三个天体。
为了简单起见,我们把三个天体都想象成规则的球体。而我们所使用的glut实用工具中,正好就有一个绘制球体的现成函数:glutSolidSphere,这个函数在“原点”绘制出一个球体。由于坐标是可以通过glTranslate*和glRotate*两个函数进行随意变换的,所以我们就可以在任意位置绘制球体了。函数有三个参数:第一个参数表示球体的半径,后两个参数代表了“面”的数目,简单点说就是球体的精确程度,数值越大越精确,当然代价就是速度越缓慢。这里我们只是简单的设置后两个参数为20。
太阳在坐标原点,所以不需要经过任何变换,直接绘制就可以了。
地球则要复杂一点,需要变换坐标。由于今年已经经过的天数已知为day,则地球转过的角度为day/一年的天数*360度。前面已经假定每年都是360天,因此地球转过的角度恰好为day。所以可以通过下面的代码来解决:
glRotatef(day, 0, 0, -1); /* 注意地球公转是“自西向东”的,因此是饶着Z轴负方向进行逆时针旋转 */ glTranslatef(地球轨道半径, 0, 0); glutSolidSphere(地球半径, 20, 20);
月亮是最复杂的。因为它不仅要绕地球转,还要随着地球绕太阳转。但如果我们选择地球作为参考,则月亮进行的运动就是一个简单的圆周运动了。如果我们先绘制地球,再绘制月亮,则只需要进行与地球类似的变换:
glRotatef(月亮旋转的角度, 0, 0, -1); glTranslatef(月亮轨道半径, 0, 0); glutSolidSphere(月亮半径, 20, 20);
但这个“月亮旋转的角度”,并不能简单的理解为day/一个月的天数30*360度。因为我们在绘制地球时,这个坐标已经是旋转过的。现在的旋转是在以前的基础上进行旋转,因此还需要处理这个“差值”。我们可以写成:day/30*360 - day,即减去原来已经转过的角度。这只是一种简单的处理,当然也可以在绘制地球前用glPushMatrix保存矩阵,绘制地球后用glPopMatrix恢复矩阵。再设计一个跟地球位置无关的月亮位置公式,来绘制月亮。通常后一种方法比前一种要好,因为浮点的运算是不精确的,即是说我们计算地球本身的位置就是不精确的。拿这个不精确的数去计算月亮的位置,会导致 “不精确”的成分累积,过多的“不精确”会造成错误。我们这个小程序没有去考虑这个,但并不是说这个问题不重要。
还有一个需要注意的细节: OpenGL把三维坐标中的物体绘制到二维屏幕,绘制的顺序是按照代码的顺序来进行的。因此后绘制的物体会遮住先绘制的物体,即使后绘制的物体在先绘制的物体的“后面”也是如此。使用深度测试可以解决这一问题。使用的方法是:
到此为止,我们终于可以得到整个“太阳,地球和月亮”系统的完整代码。
// 太阳、地球和月亮 // 假设每个月都是30天 // 一年12个月,共是360天 static int day = 200; // day的变化:从0到359 void myDisplay(void) { glEnable(GL_DEPTH_TEST); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(75, 1, 1, ); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(0, -, , 0, 0, 0, 0, 0, 1); // 绘制红色的“太阳” glColor3f(1.0f, 0.0f, 0.0f); glutSolidSphere(, 20, 20); // 绘制蓝色的“地球” glColor3f(0.0f, 0.0f, 1.0f); glRotatef(day/360.0*360.0, 0.0f, 0.0f, -1.0f); glTranslatef(, 0.0f, 0.0f); glutSolidSphere(, 20, 20); // 绘制黄色的“月亮” glColor3f(1.0f, 1.0f, 0.0f); glRotatef(day/30.0*360.0 - day/360.0*360.0, 0.0f, 0.0f, -1.0f); glTranslatef(, 0.0f, 0.0f); glutSolidSphere(, 20, 20); glFlush(); }
好了,艰苦的一课终于完毕。我知道,本课的内容十分枯燥,就连最后的例子也是。但我也没有更好的办法了,希望大家能坚持过去。不必担心,熟悉本课内容后,以后的一段时间内,都会是比较轻松愉快的了。
OpenGL入门学习[六]
今天要讲的是动画制作——可能是各位都很喜欢的。除了讲授知识外,我们还会让昨天那个“太阳、地球和月亮”天体图画动起来。缓和一下枯燥的气氛。
本次课程,我们将进入激动人心的计算机动画世界。
想必大家都知道电影和动画的工作原理吧?是的,快速的把看似连续的画面一幅幅的呈现在人们面前。一旦每秒钟呈现的画面超过24幅,人们就会错以为它是连续的。
我们通常观看的电视,每秒播放25或30幅画面。但对于计算机来说,它可以播放更多的画面,以达到更平滑的效果。如果速度过慢,画面不够平滑。如果速度过快,则人眼未必就能反应得过来。对于一个正常人来说,每秒60~120幅图画是比较合适的。具体的数值因人而异。
假设某动画一共有n幅画面,则它的工作步骤就是:
如果用C语言伪代码来描述这一过程,就是:
for(i=0; i<n; ++i) { DrawScene(i); Wait(); }
双缓冲技术
在计算机上的动画与实际的动画有些不同:实际的动画都是先画好了,播放的时候直接拿出来显示就行。计算机动画则是画一张,就拿出来一张,再画下一张,再拿出来。如果所需要绘制的图形很简单,那么这样也没什么问题。但一旦图形比较复杂,绘制需要的时间较长,问题就会变得突出。
让我们把计算机想象成一个画图比较快的人,假如他直接在屏幕上画图,而图形比较复杂,则有可能在他只画了某幅图的一半的时候就被观众看到。而后面虽然他把画补全了,但观众的眼睛却又没有反应过来,还停留在原来那个残缺的画面上。也就是说,有时候观众看到完整的图象,有时却又只看到残缺的图象,这样就造成了屏幕的闪烁。
如何解决这一问题呢?我们设想有两块画板,画图的人在旁边画,画好以后把他手里的画板与挂在屏幕上的画板相交换。这样以来,观众就不会看到残缺的画了。这一技术被应用到计算机图形中,称为双缓冲技术。即:在存储器(很有可能是显存)中开辟两块区域,一块作为发送到显示器的数据,一块作为绘画的区域,在适当的时候交换它们。由于交换两块内存区域实际上只需要交换两个指针,这一方法效率非常高,所以被广泛的采用。
注意:虽然绝大多数平台都支持双缓冲技术,但这一技术并不是OpenGL标准中的内容。OpenGL为了保证更好的可移植性,允许在实现时不使用双缓冲技术。当然,我们常用的PC都是支持双缓冲技术的。
要启动双缓冲功能,最简单的办法就是使用GLUT工具包。我们以前在main函数里面写:
glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);
实现连续动画
似乎没有任何疑问,我们应该把绘制动画的代码写成下面这个样子:
for(i=0; i<n; ++i) { DrawScene(i); glutSwapBuffers(); Wait(); }
但事实上,这样做不太符合窗口系统的程序设计思路。还记得我们的第一个OpenGL程序吗?我们在main函数里写:
glutDisplayFunc(&myDisplay);
这里的“在CPU空闲的时间绘制”和我们在第一课讲的“在需要绘制的时候绘制”有些共通,都是“在XX时间做XX事”,GLUT工具包也提供了一个比较类似的函数:glutIdleFunc,表示在CPU空闲的时间调用某一函数。其实GLUT还提供了一些别的函数,例如“在键盘按下时做某事”等。
到现在,我们已经可以初步开始制作动画了。好的,就拿上次那个“太阳、地球和月亮”的程序开刀,让地球和月亮自己动起来。
#include <GL/glut.h> #include <stdio.h> #include <stdlib.h> #include <GL/glut.h> // 太阳、地球和月亮 // 假设每个月都是30天 // 一年12个月,共是360天 static int day = 200; // day的变化:从0到359 void myDisplay(void) { glEnable(GL_DEPTH_TEST); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(75, 1, 1, ); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(0, -, , 0, 0, 0, 0, 0, 1); // 绘制红色的“太阳” glColor3f(1.0f, 0.0f, 0.0f); glutSolidSphere(, 20, 20); // 绘制蓝色的“地球” glColor3f(0.0f, 0.0f, 1.0f); glRotatef(day/360.0*360.0, 0.0f, 0.0f, -1.0f); glTranslatef(, 0.0f, 0.0f); glutSolidSphere(, 20, 20); // 绘制黄色的“月亮” glColor3f(1.0f, 1.0f, 0.0f); glRotatef(day/30.0*360.0 - day/360.0*360.0, 0.0f, 0.0f, -1.0f); glTranslatef(, 0.0f, 0.0f); glutSolidSphere(, 20, 20); glFlush(); glutSwapBuffers(); } void myIdle(void) { /* 新的函数,在空闲时调用,作用是把日期往后移动一天并重新绘制,达到动画效果 */ ++day; if( day >= 360 ) day = 0; myDisplay(); } int main(int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); // 修改了参数为GLUT_DOUBLE glutInitWindowPosition(100, 100); glutInitWindowSize(400, 400); glutCreateWindow("太阳,地球和月亮"); // 改了窗口标题 glutDisplayFunc(&myDisplay); glutIdleFunc(&myIdle); // 新加入了这句 glutMainLoop(); return 0; }
因为这个是动态的结果截图无意义,这里就不上图了。
关于垂直同步
代码是写好了,但相信大家还有疑问。某些朋友可能在运行时发现,虽然CPU几乎都用上了,但运动速度很快,根本看不清楚,另一些朋友在运行时发现CPU使用率很低,根本就没有把空闲时间完全利用起来。但对于上面那段代码来说,这些现象都是合理的。这里就牵涉到关于垂直同步的问题。
大家知道显示器的刷新率是比较有限的,一般为60~120Hz,也就是一秒钟刷新60~120次。但如果叫计算机绘制一个简单的画面,例如只有一个三角形,则一秒钟可以绘制成千上万次。因此,如果最大限度的利用计算机的处理能力,绘制很多幅画面,但显示器的刷新速度却跟不上,这不仅造成性能的浪费,还可能带来一些负面影响(例如,显示器只刷新到一半时,需要绘制的内容却变化了,由于显示器是逐行刷新的,于是显示器上半部分和下半部分实际上是来自两幅画面)。采用垂直同步技术可以解决这一问题。即,只有在显示器刷新时,才把绘制好的图象传输出去供显示。这样一来,计算机就不必去绘制大量的根本就用不到的图象了。如果显示器的刷新率为85Hz,则计算机一秒钟只需要绘制85幅图象就足够,如果场景足够简单,就会造成比较多的CPU空闲。
几乎所有的显卡都支持“垂直同步”这一功能。
垂直同步也有它的问题。如果刷新频率为60Hz,则在绘制比较简单的场景时,绘制一幅图画需要的时间很段,帧速可以恒定在60FPS(即60帧/秒)。如果场景变得复杂,绘制一幅图画的时间超过了1/60秒,则帧速将急剧下降。
如果绘制一幅图画的时间为1/50,则在第一个1/60秒时,显示器需要刷新了,但由于新的图画没有画好,所以只能显示原来的图画,等到下一个1/60秒时才显示新的图画。于是显示一幅图画实际上用了1/30秒,帧速为30FPS。(如果不采用垂直同步,则帧速应该是50FPS)如果绘制一幅图画的时间更长,则下降的趋势就是阶梯状的:60FPS,30FPS,20FPS,……(60/1,60/2,60/3,……)
如果每一幅图画的复杂程度是不一致的,且绘制它们需要的时间都在1/60上下。则在1/60时间内画完时,帧速为60FPS,在1/60时间未完成时,帧速为30FPS,这就造成了帧速的跳动。这是很麻烦的事情,需要避免它——要么想办法简化每一画面的绘制时间,要么都延迟一小段时间,以作到统一。
回过头来看前面的问题。如果使用了大量的CPU而且速度很快无法看清,则打开垂直同步可以解决该问题。当然如果你认为垂直同步有这样那样的缺点,也可以关闭它。——至于如何打开和关闭,因操作系统而异了。具体步骤请自己搜索之。
当然,也有其它办法可以控制动画的帧速,或者尽量让动画的速度尽量和帧速无关。不过这里面很多内容都是与操作系统比较紧密的,况且它们跟OpenGL关系也不太大。这里就不做介绍了。
计算帧速
#include <time.h> double CalFrequency() { static int count; static double save; static clock_t last, current; double timegap; ++count; if( count <= 50 ) return save; count = 0; last = current; current = clock(); timegap = (current-last)/(double)CLK_TCK; save = 50.0/timegap; return save; }
最后,要把计算的帧速显示出来,但我们并没有学习如何使用OpenGL把文字显示到屏幕上。——但不要忘了,在我们的图形窗口背后,还有一个命令行窗口~使用printf函数就可以轻易的输出文字了。
#include <stdio.h> double FPS = CalFrequency(); printf("FPS = %f\n", FPS);
OpenGL入门学习[七]
今天要讲的是OpenGL光照的基本知识。虽然内容显得有点多,但条理还算比较清晰,理解起来应该没有困难。即使对于一些内容没有记住,问题也不大——光照部分是一个比较独立的内容,它的学习与其它方面的学习可以分开,不像视图变换那样,影响到许多方面。课程的最后给出了一个有关光照效果的动画演示程序,我想大家会喜欢的。
从生理学的角度上讲,眼睛之所以看见各种物体,是因为光线直接或间接的从它们那里到达了眼睛。人类对于光线强弱的变化的反应,比对于颜色变化的反应来得灵敏。因此对于人类而言,光线很大程度上表现了物体的立体感。
OpenGL对于光照效果提供了直接的支持,只需要调用某些函数,便可以实现简单的光照效果。但是在这之前,我们有必要了解一些基础知识。
建立光照模型
在现实生活中,某些物体本身就会发光,例如太阳、电灯等,而其它物体虽然不会发光,但可以反射来自其它物体的光。这些光通过各种方式传播,最后进入我们的眼睛——于是一幅画面就在我们的眼中形成了。
法线向量
注意:使用glTranslate*函数或者glRotate*函数可以改变物体的外观,但法线向量并不会随之改变。然而,使用glScale*函数,对每一坐标轴进行不同程度的缩放,很有可能导致法线向量的不正确,虽然OpenGL提供了一些措施来修正这一问题,但由此也带来了各种开销。因此,在使用了法线向量的场合,应尽量避免使用glScale*函数。即使使用,也最好保证各坐标轴进行等比例缩放。
控制光源
在OpenGL中,仅仅支持有限数量的光源。使用GL_LIGHT0表示第0号光源,GL_LIGHT1表示第1号光源,依次类推,OpenGL至少会支持8个光源,即GL_LIGHT0到GL_LIGHT7。使用glEnable函数可以开启它们。例如,glEnable(GL_LIGHT0);可以开启第0号光源。使用glDisable函数则可以关闭光源。一些OpenGL实现可能支持更多数量的光源,但总的来说,开启过多的光源将会导致程序运行速度的严重下降,玩过3D Mark的朋友可能多少也有些体会。一些场景中可能有成百上千的电灯,这时可能需要采取一些近似的手段来进行编程,否则以目前的计算机而言,是无法运行这样的程序的。
每一个光源都可以设置其属性,这一动作是通过glLight*函数完成的。glLight*函数具有三个参数,第一个参数指明是设置哪一个光源的属性,第二个参数指明是设置该光源的哪一个属性,第三个参数则是指明把该属性值设置成多少。光源的属性众多,下面将分别介绍。
(1)GL_AMBIENT、GL_DIFFUSE、GL_SPECULAR属性。这三个属性表示了光源所发出的光的反射特性(以及颜色)。每个属性由四个值表示,分别代表了颜色的R, G, B, A值。GL_AMBIENT表示该光源所发出的光,经过非常多次的反射后,最终遗留在整个光照环境中的强度(颜色)。GL_DIFFUSE表示该光源所发出的光,照射到粗糙表面时经过漫反射,所得到的光的强度(颜色)。GL_SPECULAR表示该光源所发出的光,照射到光滑表面时经过镜面反射,所得到的光的强度(颜色)。
(2)GL_POSITION属性。表示光源所在的位置。由四个值(X, Y, Z, W)表示。如果第四个值W为零,则表示该光源位于无限远处,前三个值表示了它所在的方向。这种光源称为方向性光源,通常,太阳可以近似的被认为是方向性光源。如果第四个值W不为零,则X/W, Y/W, Z/W表示了光源的位置。这种光源称为位置性光源。对于位置性光源,设置其位置与设置多边形顶点的方式相似,各种矩阵变换函数例如:glTranslate*、glRotate*等在这里也同样有效。方向性光源在计算时比位置性光源快了不少,因此,在视觉效果允许的情况下,应该尽可能的使用方向性光源。
(3)GL_SPOT_DIRECTION、GL_SPOT_EXPONENT、GL_SPOT_CUTOFF属性。表示将光源作为聚光灯使用(这些属性只对位置性光源有效)。很多光源都是向四面八方发射光线,但有时候一些光源则是只向某个方向发射,比如手电筒,只向一个较小的角度发射光线。GL_SPOT_DIRECTION属性有三个值,表示一个向量,即光源发射的方向。GL_SPOT_EXPONENT属性只有一个值,表示聚光的程度,为零时表示光照范围内向各方向发射的光线强度相同,为正数时表示光照向中央集中,正对发射方向的位置受到更多光照,其它位置受到较少光照。数值越大,聚光效果就越明显。
(4)GL_CONSTANT_ATTENUATION、GL_LINEAR_ATTENUATION、GL_QUADRATIC_ATTENUATION属性。这三个属性表示了光源所发出的光线的直线传播特性(这些属性只对位置性光源有效)。现实生活中,光线的强度随着距离的增加而减弱,OpenGL把这个减弱的趋势抽象成函数:
衰减因子 = 1 / (k1 + k2 * d + k3 * k3 * d)
其中d表示距离,光线的初始强度乘以衰减因子,就得到对应距离的光线强度。k1,k2,k3分别就是GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC_ATTENUATION。通过设置这三个常数,就可以控制光线在传播过程中的减弱趋势。属性还真是不少。当然了,如果是使用方向性光源,(3)(4)这两类属性就不会用到了,问题就变得简单明了。
控制材质
材质与光源相似,也需要设置众多的属性。不同的是,光源是通过glLight*函数来设置的,而材质则是通过glMaterial*函数来设置的。
glMaterial*函数有三个参数。第一个参数表示指定哪一面的属性。可以是GL_FRONT、GL_BACK或者GL_FRONT_AND_BACK。分别表示设置“正面”“背面”的材质,或者两面同时设置。(关于“正面”“背面”的内容需要参看前些课程的内容)第二、第三个参数与glLight*函数的第二、三个参数作用类似。下面分别说明glMaterial*函数可以指定的材质属性。
(1)GL_AMBIENT、GL_DIFFUSE、GL_SPECULAR属性。这三个属性与光源的三个对应属性类似,每一属性都由四个值组成。GL_AMBIENT表示各种光线照射到该材质上,经过很多次反射后最终遗留在环境中的光线强度(颜色)。GL_DIFFUSE表示光线照射到该材质上,经过漫反射后形成的光线强度(颜色)。GL_SPECULAR表示光线照射到该材质上,经过镜面反射后形成的光线强度(颜色)。通常,GL_AMBIENT和GL_DIFFUSE都取相同的值,可以达到比较真实的效果。使用GL_AMBIENT_AND_DIFFUSE可以同时设置GL_AMBIENT和GL_DIFFUSE属性。
(2)GL_SHININESS属性。该属性只有一个值,称为“镜面指数”,取值范围是0到128。该值越小,表示材质越粗糙,点光源发射的光线照射到上面,也可以产生较大的亮点。该值越大,表示材质越类似于镜面,光源照射到上面后,产生较小的亮点。
(3)GL_EMISSION属性。该属性由四个值组成,表示一种颜色。OpenGL认为该材质本身就微微的向外发射光线,以至于眼睛感觉到它有这样的颜色,但这光线又比较微弱,以至于不会影响到其它物体的颜色。
(4)GL_COLOR_INDEXES属性。该属性仅在颜色索引模式下使用,由于颜色索引模式下的光照比RGBA模式要复杂,并且使用范围较小,这里不做讨论。
选择光照模型
最后的准备
到现在可以说是完事俱备了。不过,OpenGL默认是关闭光照处理的。要打开光照处理功能,使用下面的语句:
glEnable(GL_LIGHTING);
要关闭光照处理功能,使用glDisable(GL_LIGHTING);即可。
示例程序
下面给出具体的代码:
#include <gl/glut.h> #define WIDTH 400 #define HEIGHT 400 static GLfloat angle = 0.0f; void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 创建透视效果视图 glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(90.0f, 1.0f, 1.0f, 20.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(0.0, 5.0, -10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0); // 定义太阳光源,它是一种白色的光源 { GLfloat sun_light_position[] = {
0.0f, 0.0f, 0.0f, 1.0f}; GLfloat sun_light_ambient[] = {
0.0f, 0.0f, 0.0f, 1.0f}; GLfloat sun_light_diffuse[] = {
1.0f, 1.0f, 1.0f, 1.0f}; GLfloat sun_light_specular[] = {
1.0f, 1.0f, 1.0f, 1.0f}; glLightfv(GL_LIGHT0, GL_POSITION, sun_light_position); glLightfv(GL_LIGHT0, GL_AMBIENT, sun_light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, sun_light_diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, sun_light_specular); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); glEnable(GL_DEPTH_TEST); } // 定义太阳的材质并绘制太阳 { GLfloat sun_mat_ambient[] = {
0.0f, 0.0f, 0.0f, 1.0f}; GLfloat sun_mat_diffuse[] = {
0.0f, 0.0f, 0.0f, 1.0f}; GLfloat sun_mat_specular[] = {
0.0f, 0.0f, 0.0f, 1.0f}; GLfloat sun_mat_emission[] = {
0.5f, 0.0f, 0.0f, 1.0f}; GLfloat sun_mat_shininess = 0.0f; glMaterialfv(GL_FRONT, GL_AMBIENT, sun_mat_ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, sun_mat_diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, sun_mat_specular); glMaterialfv(GL_FRONT, GL_EMISSION, sun_mat_emission); glMaterialf (GL_FRONT, GL_SHININESS, sun_mat_shininess); glutSolidSphere(2.0, 40, 32); } // 定义地球的材质并绘制地球 { GLfloat earth_mat_ambient[] = {
0.0f, 0.0f, 0.5f, 1.0f}; GLfloat earth_mat_diffuse[] = {
0.0f, 0.0f, 0.5f, 1.0f}; GLfloat earth_mat_specular[] = {
0.0f, 0.0f, 1.0f, 1.0f}; GLfloat earth_mat_emission[] = {
0.0f, 0.0f, 0.0f, 1.0f}; GLfloat earth_mat_shininess = 30.0f; glMaterialfv(GL_FRONT, GL_AMBIENT, earth_mat_ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, earth_mat_diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, earth_mat_specular); glMaterialfv(GL_FRONT, GL_EMISSION, earth_mat_emission); glMaterialf (GL_FRONT, GL_SHININESS, earth_mat_shininess); glRotatef(angle, 0.0f, -1.0f, 0.0f); glTranslatef(5.0f, 0.0f, 0.0f); glutSolidSphere(2.0, 40, 32); } glutSwapBuffers(); } void myIdle(void) { angle += 1.0f; if( angle >= 360.0f ) angle = 0.0f; myDisplay(); } int main(int argc, char* argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE); glutInitWindowPosition(200, 200); glutInitWindowSize(WIDTH, HEIGHT); glutCreateWindow("OpenGL光照演示"); glutDisplayFunc(&myDisplay); glutIdleFunc(&myIdle); glutMainLoop(); return 0; }
可以使用多个光源来实现各种逼真的效果,然而,光源数量的增加将造成程序运行速度的明显下降。
OpenGL入门学习[八]
同时,考虑这样一段代码:
const int segments = 100; const GLfloat pi = 3.14f; int i; glLineWidth(10.0); glBegin(GL_LINE_LOOP); for(i=0; i<segments; ++i) { GLfloat tmp = 2 * pi * i / segments; glVertex2f(cos(tmp), sin(tmp)); } glEnd();
分配显示列表编号
创建显示列表
glNewList(list, GL_COMPILE); glColor3f(1.0f, 0.0f, 0.0f); glVertex2f(0.0f, 0.0f); glEnd();
注意:显示列表只能装入OpenGL函数,而不能装入其它内容。例如:
int i = 3; glNewList(list, GL_COMPILE); if( i > 20 ) glColor3f(1.0f, 0.0f, 0.0f); glVertex2f(0.0f, 0.0f); glEnd();
其中if这个判断就没有被装入到显示列表。以后即使修改i的值,使i>20的条件成立,则glColor3f这个函数也不会被执行。因为它根本就不存在于显示列表中。
另外,并非所有的OpenGL函数都可以装入到显示列表中。例如,各种用于查询的函数,它们无法被装入到显示列表,因为它们都具有返回值,而glCallList和glCallLists函数都不知道如何处理这些返回值。在网络方式下,设置客户端状态的函数也无法被装入到显示列表,这是因为显示列表被保存到服务器端,各种设置客户端状态的函数在发送到服务器端以前就被执行了,而服务器端无法执行这些函数。分配、创建、删除显示列表的动作也无法被装入到另一个显示列表,但调用显示列表的动作则可以被装入到另一个显示列表。
调用显示列表
使用glCallList函数可以调用一个显示列表。该函数有一个参数,表示要调用的显示列表的编号。例如,要调用编号为10的显示列表,直接使用glCallList(10);就可以了。
使用glCallLists函数可以调用一系列的显示列表。该函数有三个参数,第一个参数表示了要调用多少个显示列表。第二个参数表示了这些显示列表的编号的储存格式,可以是GL_BYTE(每个编号用一个GLbyte表示),GL_UNSIGNED_BYTE(每个编号用一个GLubyte表示),GL_SHORT,GL_UNSIGNED_SHORT,GL_INT,GL_UNSIGNED_INT,GL_FLOAT。第三个参数表示了这些显示列表的编号所在的位置。在使用该函数前,需要用glListBase函数来设置一个偏移量。假设偏移量为k,且glCallLists中要求调用的显示列表编号依次为l1, l2, l3, …,则实际调用的显示列表为l1+k, l2+k, l3+k, …。
例如:
GLuint lists[] = {1, 3, 4, 8}; glListBase(10); glCallLists(4, GL_UNSIGNED_INT, lists);
则实际上调用的是编号为11, 13, 14, 18的四个显示列表。
注:“调用显示列表”这个动作本身也可以被装在另一个显示列表中。
销毁显示列表
- 1 明显的减少OpenGL函数的调用次数。如果函数调用是通过网络进行的(Linux等操作系统支持这样的方式,即由应用程序在客户端发出OpenGL请求,由网络上的另一台服务器进行实际的绘图操作),将显示列表保存在服务器端,可以大大减少网络负担。
- 2 保存中间结果,避免一些不必要的计算。例如前面的样例程序中,cos、sin函数的计算结果被直接保存到显示列表中,以后使用时就不必重复计算。
- 3 便于优化。我们已经知道,使用
glTranslate*、glRotate*、glScale*等函数时,实际上是执行矩阵乘法操作,由于这些函数经常被组合在一起使用,通常会出现矩阵的连乘。这时,如果把这些操作保存到显示列表中,则一些复杂的OpenGL版本会尝试先计算出连乘的一部分结果,从而提高程序的运行速度。在其它方面也可能存在类似的例子。
A点:( 0.5, -sqrt(6)/12, -sqrt(3)/6) B点:( -0.5, -sqrt(6)/12, -sqrt(3)/6) C点:( 0, -sqrt(6)/12, sqrt(3)/3) D点:( 0, sqrt(6)/4, 0)
程序代码中也做了相应的修改
下面给出程序代码,大家可以从中体会一下显示列表的用法。
#include <GL/glut.h> #include <stdio.h> #include <stdlib.h> #include <GL/glut.h> #define WIDTH 400 #define HEIGHT 400 #include <math.h> #define ColoredVertex(c, v) do{ glColor3fv(c); glVertex3fv(v); }while(0) GLfloat angle = 0.0f; void myDisplay(void) { static int list = 0; if( list == 0 ) { // 如果显示列表不存在,则创建 /* GLfloat PointA[] = {-0.5, -5*sqrt(5)/48, sqrt(3)/6}, PointB[] = { 0.5, -5*sqrt(5)/48, sqrt(3)/6}, PointC[] = { 0, -5*sqrt(5)/48, -sqrt(3)/3}, PointD[] = { 0, 11*sqrt(6)/48, 0}; */ // 2007年4月27日修改 GLfloat PointA[] = { 0.5f, -sqrt(6.0f)/12, -sqrt(3.0f)/6}, PointB[] = {-0.5f, -sqrt(6.0f)/12, -sqrt(3.0f)/6}, PointC[] = { 0.0f, -sqrt(6.0f)/12, sqrt(3.0f)/3}, PointD[] = { 0.0f, sqrt(6.0f)/4, 0}; GLfloat ColorR[] = {
1, 0, 0}, ColorG[] = {
0, 1, 0}, ColorB[] = {
0, 0, 1}, ColorY[] = {
1, 1, 0}; list = glGenLists(1); glNewList(list, GL_COMPILE); glBegin(GL_TRIANGLES); // 平面ABC ColoredVertex(ColorR, PointA); ColoredVertex(ColorG, PointB); ColoredVertex(ColorB, PointC); // 平面ACD ColoredVertex(ColorR, PointA); ColoredVertex(ColorB, PointC); ColoredVertex(ColorY, PointD); // 平面CBD ColoredVertex(ColorB, PointC); ColoredVertex(ColorG, PointB); ColoredVertex(ColorY, PointD); // 平面BAD ColoredVertex(ColorG, PointB); ColoredVertex(ColorR, PointA); ColoredVertex(ColorY, PointD); glEnd(); glEndList(); glEnable(GL_DEPTH_TEST); } // 已经创建了显示列表,在每次绘制正四面体时将调用它 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); glRotatef(angle, 1, 0.5, 0); glCallList(list); glPopMatrix(); glutSwapBuffers(); } void myIdle(void) { ++angle; if( angle >= 360.0f ) angle = 0.0f; myDisplay(); } int main(int argc, char* argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE); glutInitWindowPosition(200, 200); glutInitWindowSize(WIDTH, HEIGHT); glutCreateWindow("OpenGL 窗口"); glutDisplayFunc(&myDisplay); glutIdleFunc(&myIdle); glutMainLoop(); return 0; }
void setNormal(GLfloat* Point1, GLfloat* Point2, GLfloat* Point3) { GLfloat normal[3]; int i; for(i=0; i<3; ++i) normal[i] = (Point1[i]+Point2[i]+Point3[i]) / 3; glNormal3fv(normal); }
限于篇幅,这里就不给出完整的程序了。不过,大家可以自行尝试,看看使用光照后效果有何种改观。尤其是注意四面体各个表面交界的位置,在未使用光照前,几乎看不清轮廓,在使用光照后,可比较容易的区分各个平面,因此立体感得到加强。
当然了,这样的效果还不够。如果在各表面的交界处设置很多细小的平面,进行平滑处理,则光照后的效果将更真实。但这已经远离本课的内容了。
OpenGL入门学习[九]
注意:只有在RGBA模式下,才可以使用混合功能,颜色索引模式下是无法使用混合功能的。
源因子和目标因子
(Rs*Sr+Rd*Dr, Gs*Sg+Gd*Dg, Bs*Sb+Bd*Db, As*Sa+Ad*Da)
当然了,如果颜色的某一分量超过了1.0,则它会被自动截取为1.0,不需要考虑越界的问题。
源因子和目标因子是可以通过glBlendFunc函数来进行设置的。glBlendFunc有两个参数,前者表示源因子,后者表示目标因子。这两个参数可以是多种值,下面介绍比较常用的几种。
除此以外,还有GL_SRC_COLOR(把源颜色的四个分量分别作为因子的四个分量)、GL_ONE_MINUS_SRC_COLOR、GL_DST_COLOR、GL_ONE_MINUS_DST_COLOR等,前两个在OpenGL旧版本中只能用于设置目标因子,后两个在OpenGL旧版本中只能用于设置源因子。新版本的OpenGL则没有这个限制,并且支持新的GL_CONST_COLOR(设定一种常数颜色,将其四个分量分别作为因子的四个分量)、GL_ONE_MINUS_CONST_COLOR、GL_CONST_ALPHA、GL_ONE_MINUS_CONST_ALPHA。另外还有GL_SRC_ALPHA_SATURATE。新版本的OpenGL还允许颜色的alpha值和RGB值采用不同的混合因子。但这些都不是我们现在所需要了解的。毕竟这还是入门教材,不需要整得太复杂~
二维图形混合举例
下面看一个简单的例子,实现将两种不同的颜色混合在一起。为了便于观察,我们绘制两个矩形:glRectf(-1, -1, 0.5, 0.5);glRectf(-0.5, -0.5, 1, 1);,这两个矩形有一个重叠的区域,便于我们观察混合的效果。
先来看看使用glBlendFunc(GL_ONE, GL_ZERO);的它的结果与不使用混合时相同。
void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ZERO); glColor4f(1, 0, 0, 0.5); glRectf(-1, -1, 0.5, 0.5); glColor4f(0, 1, 0, 0.5); glRectf(-0.5, -0.5, 1, 1); glutSwapBuffers(); }
尝试把glBlendFunc的参数修改为
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); glBlendFunc(GL_ONE, GL_ONE);
第二种情况:
实现三维混合
也许你迫不及待的想要绘制一个三维的带有半透明物体的场景了。但是现在恐怕还不行,还有一点是在进行三维场景的混合时必须注意的,那就是深度缓冲。
深度缓冲是这样一段数据,它记录了每一个像素距离观察者有多近。在启用深度缓冲测试的情况下,如果将要绘制的像素比原来的像素更近,则像素将被绘制。否则,像素就会被忽略掉,不进行绘制。这在绘制不透明的物体时非常有用——不管是先绘制近的物体再绘制远的物体,还是先绘制远的物体再绘制近的物体,或者干脆以混乱的顺序进行绘制,最后的显示结果总是近的物体遮住远的物体。
然而在你需要实现半透明效果时,发现一切都不是那么美好了。如果你绘制了一个近距离的半透明物体,则它在深度缓冲区内保留了一些信息,使得远处的物体将无法再被绘制出来。虽然半透明的物体仍然半透明,但透过它看到的却不是正确的内容了。
要解决以上问题,需要在绘制半透明物体时将深度缓冲区设置为只读,这样一来,虽然半透明物体被绘制上去了,深度缓冲区还保持在原来的状态。如果再有一个物体出现在半透明物体之后,在不透明物体之前,则它也可以被绘制(因为此时深度缓冲区中记录的是那个不透明物体的深度)。以后再要绘制不透明物体时,只需要再将深度缓冲区设置为可读可写的形式即可。嗯?你问我怎么绘制一个一部分半透明一部分不透明的物体?这个好办,只需要把物体分为两个部分,一部分全是半透明的,一部分全是不透明的,分别绘制就可以了。
即使使用了以上技巧,我们仍然不能随心所欲的按照混乱顺序来进行绘制。必须是先绘制不透明的物体,然后绘制透明的物体。否则,假设背景为蓝色,近处一块红色玻璃,中间一个绿色物体。如果先绘制红色半透明玻璃的话,它先和蓝色背景进行混合,则以后绘制中间的绿色物体时,想单独与红色玻璃混合已经不能实现了。
总结起来,绘制顺序就是:首先绘制所有不透明的物体。如果两个物体都是不透明的,则谁先谁后都没有关系。然后,将深度缓冲区设置为只读。接下来,绘制所有半透明的物体。如果两个物体都是半透明的,则谁先谁后只需要根据自己的意愿(注意了,先绘制的将成为“目标颜色”,后绘制的将成为“源颜色”,所以绘制的顺序将会对结果造成一些影响)。最后,将深度缓冲区设置为可读可写形式。
调用glDepthMask(GL_FALSE);可将深度缓冲区设置为只读形式。调用glDepthMask(GL_TRUE);可将深度缓冲区设置为可读可写形式。
一些网上的教程,包括大名鼎鼎的NeHe教程,都在使用三维混合时直接将深度缓冲区禁用,即调用glDisable(GL_DEPTH_TEST);。这样做并不正确。如果先绘制一个不透明的物体,再在其背后绘制半透明物体,本来后面的半透明物体将不会被显示(被不透明的物体遮住了),但如果禁用深度缓冲,则它仍然将会显示,并进行混合。NeHe提到某些显卡在使用glDepthMask函数时可能存在一些问题,但可能是由于我的阅历有限,并没有发现这样的情况。
那么,实际的演示一下吧。我们来绘制一些半透明和不透明的球体。假设有三个球体,一个红色不透明的,一个绿色半透明的,一个蓝色半透明的。红色最远,绿色在中间,蓝色最近。根据前面所讲述的内容,红色不透明球体必须首先绘制,而绿色和蓝色则可以随意修改顺序。这里为了演示不注意设置深度缓冲的危害,我们故意先绘制最近的蓝色球体,再绘制绿色球体。
为了让这些球体有一点立体感,我们使用光照。在(1, 1, -1)处设置一个白色的光源。代码如下:
void setLight(void) { static const GLfloat light_position[] = {
1.0f, 1.0f, -1.0f, 1.0f}; static const GLfloat light_ambient[] = {
0.2f, 0.2f, 0.2f, 1.0f}; static const GLfloat light_diffuse[] = {
1.0f, 1.0f, 1.0f, 1.0f}; static const GLfloat light_specular[] = {
1.0f, 1.0f, 1.0f, 1.0f}; glLightfv(GL_LIGHT0, GL_POSITION, light_position); glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); glEnable(GL_DEPTH_TEST); }
每一个球体颜色不同。所以它们的材质也都不同。这里用一个函数来设置材质。
void setMatirial(const GLfloat mat_diffuse[4], GLfloat mat_shininess) { static const GLfloat mat_specular[] = {
0.0f, 0.0f, 0.0f, 1.0f}; static const GLfloat mat_emission[] = {
0.0f, 0.0f, 0.0f, 1.0f}; glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mat_diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission); glMaterialf (GL_FRONT, GL_SHININESS, mat_shininess); }
有了这两个函数,我们就可以根据前面的知识写出整个程序代码了。这里只给出了绘制的部分,其它部分大家可以自行完成。
void myDisplay(void) { // 定义一些材质颜色 const static GLfloat red_color[] = {
1.0f, 0.0f, 0.0f, 1.0f}; const static GLfloat green_color[] = {
0.0f, 1.0f, 0.0f, 0.3333f}; const static GLfloat blue_color[] = {
0.0f, 0.0f, 1.0f, 0.5f}; // 清除屏幕 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 启动混合并设置混合因子 glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // 设置光源 setLight(); // 以(0, 0, 0.5)为中心,绘制一个半径为.3的不透明红色球体(离观察者最远) setMatirial(red_color, 30.0); glPushMatrix(); glTranslatef(0.0f, 0.0f, 0.5f); glutSolidSphere(0.3, 30, 30); glPopMatrix(); // 下面将绘制半透明物体了,因此将深度缓冲设置为只读 glDepthMask(GL_FALSE); // 以(0.2, 0, -0.5)为中心,绘制一个半径为.2的半透明蓝色球体(离观察者最近) setMatirial(blue_color, 30.0); glPushMatrix(); glTranslatef(0.2f, 0.0f, -0.5f); glutSolidSphere(0.2, 30, 30); glPopMatrix(); // 以(0.1, 0, 0)为中心,绘制一个半径为.15的半透明绿色球体(在前两个球体之间) setMatirial(green_color, 30.0); glPushMatrix(); glTranslatef(0.1, 0, 0); glutSolidSphere(0.15, 30, 30); glPopMatrix(); // 完成半透明物体的绘制,将深度缓冲区恢复为可读可写的形式 glDepthMask(GL_TRUE); glutSwapBuffers(); }
大家也可以将上面两处glDepthMask删去,结果会看到最近的蓝色球虽然是半透明的,但它的背后直接就是红色球了,中间的绿色球没有被正确绘制。(我经过测试发现不是这样的,和原来的显示一样,是不是因为版本改变了??)
/*/
转来的东西,原文是在windows上开发,这里在linux下稍作修改就能跑起来。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/118303.html
