【运筹学】对偶理论 : 总结 ( 对偶理论 | 原问题与对偶问题对应关系 | 对偶理论的相关结论 ) ★★★

【运筹学】对偶理论 : 总结 ( 对偶理论 | 原问题与对偶问题对应关系 | 对偶理论的相关结论 ) ★★★一 对偶理论 1 对称性定理 2 弱对偶定理 3 最优性定理 4 强对偶性 5 互补松弛定理 二 原问题与对偶问题对应关系 二 对偶理论的相关结论 1 对偶问题存在 2 对偶问题转化 3 对偶问题的解 4 互补松弛定理 对偶理论

大家好,欢迎来到IT知识分享网。

一、对偶理论


1、对称性定理

对称性定理 :

  • 原问题 ( L P LP LP ) 的 对偶 是 对偶问题 ( D P DP DP )
  • 对偶问题 ( D P DP DP ) 的 对偶 是 原问题 ( L P LP LP )

原问题 和 对偶问题 互为对偶 ;

对偶问题是对称的

原问题 L P LP LP :

m a x Z = C X s . t { A X ≤ b X ≥ 0 \begin{array}{lcl} maxZ = C X \\\\ s.t\begin{cases} AX \leq b \\\\ X \geq 0 \end{cases}\end{array} maxZ=CXs.tAXbX0

对偶问题 D P DP DP :

m i n W = b T Y s . t { A T Y ≥ C T Y ≥ 0 \begin{array}{lcl} minW = b^T Y \\\\ s.t\begin{cases} A^TY \geq C^T \\\\ Y \geq 0 \end{cases}\end{array} minW=bTYs.tATYCTY0

2、弱对偶定理

弱对偶定理 :

假设 X 0 \rm X^0 X0 Y 0 \rm Y^0 Y0 分别是 问题 ( P ) \rm (P) (P) ( 目标函数求最大值 ) 问题 ( D ) \rm (D) (D) ( 目标函数求最小值 )可行解 , 则必有 C X 0 ≤ Y 0 b \rm CX^0 \leq Y^0 b CX0Y0b ,

展开后为 ∑ j = 1 n c j x j ≤ ∑ i = 1 m y i b i \rm \sum_{j = 1}^n c_j x_j \leq \sum_{i = 1}^{m} y_i b_i j=1ncjxji=1myibi

弱对偶定理推论 1 :

原问题 任何一个 可行解 的目标函数值 , 都是其对偶问题 目标函数值的下界 ;

反之 ,

对偶问题 任何一个 可行解 的目标函数值 , 都是其原问题 目标函数的上界 ;

弱对偶定理推论 2 : ( 对偶问题的无界性 )

在一对 对偶问题 ( P ) \rm (P) (P) ( D ) \rm (D) (D) 中 ,

如果其中 一个线性规划问题可行 , 但是 目标函数无界 , 则 另外一个问题没有可行解 ;

如果其中 一个线性规划问题不可行 , 其 对偶问题不一定不可行 ;

弱对偶定理推论 3 :

在一对 对偶问题 ( P ) \rm (P) (P) ( D ) \rm (D) (D) 中 ,

如果其中 一个线性规划问题可行 , 而 另一个线性规划问题不可行 , 则 该可行问题的目标函数是无界的;

3、最优性定理

最优性定理 :

如果 X 0 \rm X^0 X0原问题的可行解 , Y 0 \rm Y^0 Y0对偶问题的可行解 ,

并且 两个可行解对应的目标函数值相等 , 即 C X 0 = B Y 0 \rm CX^0 = BY^0 CX0=BY0 , 即 z = w \rm z = w z=w ,

X 0 \rm X^0 X0 是原问题的最优解 , Y 0 \rm Y^0 Y0 是对偶问题的最优解 ;

4、强对偶性

强对偶性 : 如果 原问题 与 对偶问题 都有可行解 , 只要有一个问题有最优解 , 则 两个问题都有最优解 , 二者的最优解的目标函数值相等 ;

5、互补松弛定理

X 0 \rm X^0 X0 Y 0 \rm Y^0 Y0 分别是 原问题 P \rm P P 问题 和 对偶问题 D \rm D D可行解 ,

这两个解各自都是对应 线性规划问题最优解

的 充要条件是 : { Y 0 X s = 0 Y s X 0 = 0 \begin{cases} \rm Y^0 X_s = 0 \\\\ \rm Y_sX^0 = 0 \end{cases} Y0Xs=0YsX0=0

其中 X s , Y s \rm X_s , Y_s Xs,Ys松弛变量剩余变量 ;

互补松弛定理简写 :

X 0 \rm X^0 X0 Y 0 \rm Y^0 Y0 分别是 原问题 P \rm P P 问题 和 对偶问题 D \rm D D最优解 ⇔ \Leftrightarrow { Y 0 X s = 0 Y s X 0 = 0 \begin{cases} \rm Y^0 X_s = 0 \\\\ \rm Y_sX^0 = 0 \end{cases} Y0Xs=0YsX0=0

其中 X s , Y s \rm X_s , Y_s Xs,Ys松弛变量剩余变量 ;

二、原问题与对偶问题对应关系


原问题与对偶问题对应关系 :

在这里插入图片描述

如果 原问题 有最优解 , 对偶问题也 有最优解 ;

如果 原问题 有 无界解 , 对偶问题 无可行解 ;

如果 原问题 无可行解 , 对偶问题 无法判断 ;

上述是根据弱对偶定理总结的 ;

二、对偶理论的相关结论


1、对偶问题存在

任何 线性规划问题 , 都有一个对应的 对偶线性规划问题 ;

2、对偶问题转化

原问题 P \rm P P : m a x Z = C X s . t { A X ≤ b X ≥ 0 \begin{array}{lcl} \rm maxZ = C X \\\\ \rm s.t\begin{cases} \rm AX \leq b \\\\ \rm X \geq 0 \end{cases}\end{array} maxZ=CXs.tAXbX0 ;              \ \ \ \ \ \ \ \ \ \ \,            对偶问题 D \rm D D : m i n W = b T Y s . t { A T Y ≥ C T Y ≥ 0 \begin{array}{lcl} \rm minW = b^T Y \\\\ \rm s.t\begin{cases} \rm A^TY \geq C^T \\\\ \rm Y \geq 0 \end{cases}\end{array} minW=bTYs.tATYCTY0

原问题与对偶问题对应关系 :

在这里插入图片描述

原问题第 i i i 个约束条件是 ≤ \leq 约束 , 其对偶问题的第 i i i 个变量的符号不确定 , 可能大于等于 0 0 0 , 也可能小于等于 0 0 0 ;

查看 约束变量的符号 与 其另外一个对偶问题的 约束方程的符号 一致性 , 来确定对偶问题的约束方程符号 ;

约束方程符号 :

如果当前线性规划问题 目标函数是求最大值 , 原问题就是上面的问题 , 其对偶问题 ( 下面的 ) 的约束方程符号是 ≥ \geq , 因此 对偶问题的约束方程符号原问题变量 符号一致 ;

如果当前线性规划问题 目标函数是求最小值 , 原问题就是下面的问题 , 其对偶问题 ( 上面的 ) 的约束方程符号是 ≤ \leq , 因此 对偶问题的约束方程符号原问题变量 符号相反 ;

变量符号 :

如果当前线性规划问题 目标函数是求最大值 , 原问题就是上面的问题 , 其对偶问题 ( 下面的 ) 的约束方程符号是 ≥ \geq , 因此 对偶问题的变量符号原问题约束方程符号 符号相反 ;

如果当前线性规划问题 目标函数是求最大值 , 原问题就是上面的问题 , 其对偶问题 ( 下面的 ) 的约束方程符号是 ≥ \geq , 因此 对偶问题的变量符号原问题约束方程符号 符号一致 ;

3、对偶问题的解

互为对偶的两个问题 , 或者同时都有最优解 , 或者同时都没有最优解 ;

② 对偶问题 有可行解 , 原问题 不一定有可行解 , 因为对偶问题的可行解可能是 无界解 , 原问题可能 无可行解 ;

③ 原问题有 多重解 , 对偶问题 可能有多重解 , 也 可能有唯一解 ; 多重解是 有无穷多最优解 ;

④ 对偶问题 有可行解 , 原问题 无可行解 , 则对偶问题 有无界解 ; 一对问题中 , 一个有可行解 , 一个无可行解 , 则有可行解的是无界解 ;

⑤ 原问题 没有最优解 , 对偶问题无法判断 ; 没有最优解有两种情况 , 一种是 无界解 , 一种是 无可行解 ; 如果原问题有无界解 , 则对偶问题无可行解 ; 如果原问题无可行解 , 则对偶问题无可行解 ;

⑥ 如果对偶问题没有可行解 , 对偶问题无法判断 , 无界解无可行解 两种情况都有可能 ;

⑦ 如果原问题与对偶问题 都有可行解 , 则 都有最优解 ;

如果 原问题 有最优解 , 对偶问题也 有最优解 ;

如果 原问题 有 无界解 , 对偶问题 无可行解 ;

如果 原问题 无可行解 , 对偶问题 无法判断 ;

4、互补松弛定理

如果 X 0 \rm X^0 X0 Y 0 \rm Y^0 Y0 分别是原问题与对偶问题的最优解 , 则 Y 0 X s = Y s X 0 = 0 \rm Y^0 X_s = Y_sX^0 = 0 Y0Xs=YsX0=0 ;

X 0 \rm X^0 X0 Y 0 \rm Y^0 Y0 分别是 原问题 P \rm P P 问题 和 对偶问题 D \rm D D最优解 ⇔ \Leftrightarrow { Y 0 X s = 0 Y s X 0 = 0 \begin{cases} \rm Y^0 X_s = 0 \\\\ \rm Y_sX^0 = 0 \end{cases} Y0Xs=0YsX0=0

其中 X s , Y s \rm X_s , Y_s Xs,Ys松弛变量剩余变量 ;






























































免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/118740.html

(0)
上一篇 2025-11-10 20:45
下一篇 2025-11-10 21:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信