LaTeX大括号公式和一般括号总结

LaTeX大括号公式和一般括号总结功能语法显示不好看 frac 1 2 12 frac 1 2 好一点 left frac 1 2 right 12 left frac 1 2 right 您可

大家好,欢迎来到IT知识分享网。

大括号显示

$$ \left\{ \begin{array}{lr} x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), & \\ y=s, & 0\leq s\leq L,|t|\leq1.\\ z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), & \end{array} \right. 

{ x = 3 π 2 ( 1 + 2 t ) cos ⁡ ( 3 π 2 ( 1 + 2 t ) ) , y = s , 0 ≤ s ≤ L , ∣ t ∣ ≤ 1. z = 3 π 2 ( 1 + 2 t ) sin ⁡ ( 3 π 2 ( 1 + 2 t ) ) , \left\{ \begin{array}{lr} x=\dfrac{3\pi}{2}(1+2t)\cos(\dfrac{3\pi}{2}(1+2t)), & \\ y=s, & 0\leq s\leq L,|t|\leq1.\\ z=\dfrac{3\pi}{2}(1+2t)\sin(\dfrac{3\pi}{2}(1+2t)), & \end{array} \right. x=23π(1+2t)cos(23π(1+2t)),y=s,z=23π(1+2t)sin(23π(1+2t)),0sL,t1.
对比括号一

\left\{ \begin{array}{rcl} IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\ IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h , &\\ \left |IF'_{k}(\hat{t}_{k,m} - IF'_{m}(\hat{t}_{k,m} \right |\geq d , & \end{array} \right. 

{ I F k ( t ^ k , m ) = I F m ( t ^ k , m ) , I F k ( t ^ k , m ) ± h = I F m ( t ^ k , m ) ± h , ∣ I F k ′ ( t ^ k , m − I F m ′ ( t ^ k , m ∣ ≥ d , \left\{ \begin{array}{rcl} IF_{k}(\hat{t}_{k,m})=IF_{m}(\hat{t}_{k,m}), & \\ IF_{k}(\hat{t}_{k,m}) \pm h= IF_{m}(\hat{t}_{k,m}) \pm h , &\\ \left |IF’_{k}(\hat{t}_{k,m} – IF’_{m}(\hat{t}_{k,m} \right |\geq d , & \end{array} \right. IFk(t^k,m)=IFm(t^k,m),IFk(t^k,m)±h=IFm(t^k,m)±h,IFk(t^k,mIFm(t^k,md,
常用的三种大括号写法

$$ f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. $$ 

f ( x ) = { x = cos ⁡ ( t ) y = sin ⁡ ( t ) z = x y f(x)=\left\{ \begin{aligned} x & = & \cos(t) \\ y & = & \sin(t) \\ z & = & \frac xy \end{aligned} \right. f(x)=xyz===cos(t)sin(t)yx

 $$ F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. $$ 

F H L L C = { F L 0 < S L F L ∗ S L ≤ 0 < S M F R ∗ S M ≤ 0 < S R F R S R ≤ 0 F^{HLLC}=\left\{ \begin{array}{rcl} F_L & & {0 < S_L}\\ F^*_L & & {S_L \leq 0 < S_M}\\ F^*_R & & {S_M \leq 0 < S_R}\\ F_R & & {S_R \leq 0} \end{array} \right. FHLLC=FLFLFRFR0<SLSL0<SMSM0<SRSR0

$$f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases}$$ \end{CJK*} \end{document} 

f ( x ) = { 0 x=0 1 x!=0 f(x)= \begin{cases} 0& \text{x=0}\\ 1& \text{x!=0} \end{cases} f(x)={
01x=0x!=0

$$ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} $$ 

0 1 1 0 ( 0 − i i 0 ) [ 0 − 1 1 0 ] { 1 0 0 − 1 } ∣ a b c d ∣ ∥ i 0 0 − i ∥ \begin{gathered} \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} \end{gathered} 0110(0ii0)[0110]{
1001}
acbdi00i

功能 语法 显示
不好看

\frac{1}{2} 

( 1 2 ) ( \frac{1}{2} ) (21)
好一点

\left( \frac{1}{2} \right) 
\left( \frac{a}{b} \right) 

( a b ) \left( \frac{a}{b} \right) (ba)
方括号,中括号

\left[ \frac{a}{b} \right] 

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/119942.html

(0)
上一篇 2025-11-01 22:33
下一篇 2025-11-01 22:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信