智能优化算法(一):伪随机数的产生

智能优化算法(一):伪随机数的产生智能优化算法 一 伪随机数的产生 伪随机数

大家好,欢迎来到IT知识分享网。

1.伪随机数介绍

1.1.伪随机产生的意义

1.2.伪随机产生的过程

   ∙ \bullet Step1:确定一个数学模型或某种规则。
   ∙ \bullet Step2:规定几个初始值。
   ∙ \bullet Step3:按照上述模型产生第一个随机数。
   ∙ \bullet Step4:用产生的上一个随机数作为新的初值,按照相同的步骤产生下一个随机数,重复之,得到一个伪随机数序列。


2.产生U(0,1)的乘除同余法

2.1.原始的乘同余法

%% 伪随机数的生成1--乘同余法 %乘同余法 %设定参数 clc; S0=1; A=3; L=4; M=2^L; s=S0; % 循环计算 fprintf('参数A=%d,M=%d,s0=%d的乘除同余法计算结果如下:\n',A,M,S0) %得到的随机数循环周期为2^(L=2)个 for i =1:2^(L-2) s=mod(A*s,M); fprintf('第%d个随机数为:%d\n', i,s); end %如果想产生U(0,1)则需要将求出的s/M即可。 

2.2.改进的乘同余法

  对于普通的乘同余法只能获得周期为 2 L − 2 2^{L-2} 2L2的随机数序列,这是远远不够的,所以我们通过添加一个与M互为质数的C来使得乘同余法获得周期为 2 L 2^{L} 2L的随机数数列,这种方法就被称作混合同余法,计算公式如下所示:
S k + 1 = ( A ⋅ S k + C )   m o d   ( M ) S_{k+1}=(A\cdot S_k+C)\mathrm{~mod~}(M) Sk+1=(ASk+C) mod (M)
  算法实现如下所示:

%% 伪随机数的生成2--混合乘同余法 %混合乘同余法 %设定参数 clc; S0=1; A=3; L=4; M=2^L; s=S0; C=3; % 循环计算 fprintf('参数A=%d,M=%d,C=%d,S0=%d的乘除同余法计算结果如下:\n',A,M,C,S0) %得到的随机数循环周期为2^(L)个 for i =1:2^(L) s=mod(A*s+C,M); fprintf('第%d个随机数为:%d\n', i,s); end %如果想产生U(0,1)则需要将求出的s/M即可。 

3.产生正态分布的伪随机数

  产生正态分布的伪随机数的基本原理:若 Y 1 , Y 2 , Y 3 . . . . . . Y n Y_{1},Y_{2},Y_{3}……Y_{n} Y1,Y2,Y3……Yn 是独立同分布,均值和方差分别为 μ \mu μ σ \sigma σ ,且 n n n较大,则 X = Y 1 + Y 2 + Y 3 . . . . . . + Y n X=Y_{1}+Y_{2}+Y_{3}……+Y_{n} X=Y1+Y2+Y3……+Yn 近似于正态分布,且满足 μ x = μ 1 + μ 2 + μ 3 . . . . . + μ n = n μ \mu_{x}=\mu_{1}+\mu_{2}+\mu_{3}…..+\mu_{n}=n\mu μx=μ1+μ2+μ3…..+μn=nμ σ x 2 = σ 1 2 + σ 2 2 + σ 3 2 . . . . . + σ n 2 = n σ 2 \sigma_{x}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}…..+\sigma_{n}^{2}=n\sigma_{}^{2} σx2=σ12+σ22+σ32…..+σn2=nσ2,即 x ∈ N ( n μ , n σ 2 ) x\in N( n \mu,n\sigma^{2}) xN(nμ,nσ2).
  于是正态分布可以由多个U(0,1)来近似。
  对于 Y ∈ U ( 0 , 1 ) Y\in U( 0,1) YU(0,1) 来说,对于Y的均值有:
μ y = 1 2 \mu_y=\frac12 μy=21
  对于Y的方差,计算如下所示:
σ y 2 = E ( Y 2 ) − ( E ( Y ) ) 2 = ∫ − ∞ + ∞ f ( y ) d y − ( 1 2 ) 2 = ∫ 0 1 y 2 d y − 1 4 = y 3 3 ∣ 1 0 − 1 4 = 1 12 \begin{aligned}\sigma_y^2&=E\color{r}{\left(Y^2\right)-\left(E(Y)\right)^2=\int_{-\infty}^{+\infty}f(y)dy-\left(\frac12\right)^2\\}=\int_0^1y^2dy-\frac14=\frac{y^3}3|\frac10-\frac14=\frac1{12}\end{aligned} σy2=E(Y2)(E(Y))2=+f(y)dy(21)2=01y2dy41=3y30141=121
  令 z = x − μ x σ x z=\frac{x-\mu_x}{\sigma_x} z=σxxμx,则 z ∈ N ( 0 , 1 ) z\in N(0,1) zN(0,1),则z的公式如下所所示:
z = ∑ y i − μ x σ x = ∑ y i − n μ y n σ y 2 = ∑ y i − n 2 n / 12 z=\frac{\sum y_i-\mu_x}{\sigma_x}=\frac{\sum y_i-n\mu_y}{\sqrt{n\sigma_y^2}}=\frac{\sum y_i-\frac n2}{\sqrt{n/_{12}}} z=σxyiμx=nσy2
yinμy
=
n/12
yi2n

  一般取n=12,则z的计算公式为:
z = ∑ i = 1 12 y i − 6 ∈ N ( 0 , 1 ) z=\sum_{i=1}^{12}y_i-6\in N(0,1) z=i=112yi6N(0,1)
  若想产生服从一般正态分布 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2) 的随机数x ,则只需产生 z ∈ N ( 0 , 1 ) z\in N(0,1) zN(0,1) ,再按公式 x = μ + σ z x=\mu+\sigma z x=μ+σz,即可获得 x ∈ N ( μ , σ 2 ) x\in N(\mu,\sigma^2) xN(μ,σ2).









  算法实现如下所示(取 n = 1200 n=1200 n=1200计算结果好):

%% 伪随机数的生成3--正态分布方法 %正态分布方法 %设定参数 clc %生成12个U(0,1)分布的随机数就直接调用包来解决 N=1200; for i=1:1000 Y=rand(N,1); z=(sum(Y)-N*0.5)/sqrt(N/12); fprintf('第%d个属于N(0,1)的随机数为:%.2f\n',i,z) end 

4.基于逆变法产生伪随机数

  逆变法产生伪随机数的基本原理是设Y是(0,1)上均匀分布随机变量,F为任意一个连续分布函数,定义随机变量 X = F − 1 ( Y ) X=F^{-1}(Y) X=F1(Y),则 X具有分布函数F。
  证明如下:
F X ( a ) = P { X ≤ a } = P { F − 1   ( Y ) ≤ a } = P { Y ≤ F ( a ) } \begin{aligned}F_X(a)&=P\{X\leq a\}=P\{F^{-1}~(Y)\leq a\}=P\{Y\leq F(a)\}\end{aligned} FX(a)=P{
Xa}=P{
F1 (Y)a}=P{
YF(a)}

  这里 Y ∈ U ( 0 , 1 ) Y\in U( 0,1) YU(0,1) ,有
f ( y ) = 1 , F ( y ) = P { Y ≤ y } = ∫ − ∞ y f ( y ) d y = y f(y)=1,\quad F(y)=P\{Y\leq y\}=\int_{-\infty}^yf(y)dy=y f(y)=1,F(y)=P{
Y
y}=yf(y)dy=y

  最后能够推出:
F X ( a ) = F ( a ) F_X(a)=F(a) FX(a)=F(a)
在这里插入图片描述






免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/122473.html

(0)
上一篇 2025-10-16 14:10
下一篇 2025-10-16 14:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信