什么是标准差和方差

什么是标准差和方差方差就是与均值的平方差的平均值

大家好,欢迎来到IT知识分享网。

什么是方差

方差就是与均值的平方差的平均值。方差的计算过程:

  1. 计算平均值(mean)用μ /读mu/表示。
  2. 用每一个数减去平均值,再平方(对差进行平方)
  3. 将第二步得到的平方值都加起来,再除以数据的个数,就能得到方差。

方差的求值公式:

σ 2 = 1 N ∑ i = 1 n ( x i − μ ) 2 \sigma^2=\frac1N\sum_{i=1}^n ({x}_{i} – \mu)^2 σ2=N1i=1n(xiμ)2

μ:表示平均值

标准差

平均值 = 150 + 130 + 160 + 185 + 135 + 168 + 170 + 155 + 120 + 169 10 = 154.2 平均值= \frac{150+130+160+185+135+168+170+155+120+169}{10}=154.2 平均值=10150+130+160+185+135+168+170+155+120+169=154.2

方差 = ( 150 − 154.2 ) 2 + ( 130 − 154.2 ) 2 + ( 160 − 154.2 ) 2 + ( 185 − 154.2 ) 2 + ( 135 − 154.2 ) 2 + ( 168 − 154.2 ) 2 + ( 170 − 154.2 ) 2 + ( 155 − 154.2 ) 2 + ( 120 − 154.2 ) 2 + ( 169 − 154.2 ) 2 10 = 378.36 方差= \frac{(150-154.2)^2 + (130-154.2)^2 + (160-154.2)^2 + (185-154.2)^2 + (135-154.2)^2 + (168-154.2)^2 + (170-154.2)^2 + (155-154.2)^2 + (120-154.2)^2 + (169-154.2)^2}{10} =378.36 方差=10(150154.2)2+(130154.2)2+(160154.2)2+(185154.2)2+(135154.2)2+(168154.2)2+(170154.2)2+(155154.2)2+(120154.2)2+(169154.2)2=378.36

标准差 = 3 78.35 = 19. 标准差=\sqrt378.35=19. 标准差=3
78.35=
19.

上面这个例子是针对10个同学的身高的(也就是说我们只对这10个同学的身高感兴趣,样本空间都是在这了)。

样本标准差

但是,如果数据是样本(从更大的总体中选择),则计算会发生变化!即10个同学的身高是一个样本数据(我们现在感兴趣的是全校同学的身高),因为有时候样本空间太大,不方便操作,我们可以通过样本来评价总体。计算样本标准差就与前面的会有所不同:

s = 1 N − 1 ∑ i = 1 n ( x i − x ˉ ) 2 s=\sqrt{\frac1{N-1}\sum_{i=1}^n ({x}_{i} – \bar{x})^2} s=N11i=1n(xixˉ)2

方差 = ( 150 − 154.2 ) 2 + ( 130 − 154.2 ) 2 + ( 160 − 154.2 ) 2 + ( 185 − 154.2 ) 2 + ( 135 − 154.2 ) 2 + ( 168 − 154.2 ) 2 + ( 170 − 154.2 ) 2 + ( 155 − 154.2 ) 2 + ( 120 − 154.2 ) 2 + ( 169 − 154.2 ) 2 10 − 1 = 420.4 方差= \frac{(150-154.2)^2 + (130-154.2)^2 + (160-154.2)^2 + (185-154.2)^2 + (135-154.2)^2 + (168-154.2)^2 + (170-154.2)^2 + (155-154.2)^2 + (120-154.2)^2 + (169-154.2)^2}{10-1} =420.4 方差=101(150154.2)2+(130154.2)2+(160154.2)2+(185154.2)2+(135154.2)2+(168154.2)2+(170154.2)2+(155154.2)2+(120154.2)2+(169154.2)2=420.4

标准差 = 4 20.4 = 20. 标准差=\sqrt420.4=20. 标准差=4
20.4=
20.

样本标准差得到的结果与实际很接近了。为什么要除以N-1而不是除以N呢?当年确实时除以N的,只是当时的人发现样本空间的数据除以N后得到的值往往都比实际的要小,于是想办法纠偏,就想到了一个简单的办法就是少除一个,这样结果就不会太小了,大一些也无所谓。

为什么要对每个差值进行平方,取绝对值不行吗?

σ 2 = 1 N ∑ i = 1 n ( x i − μ ) 2 \sigma^2=\frac1N\sum_{i=1}^n ({x}_{i} – \mu)^2 σ2=N1i=1n(xiμ)2

请添加图片描述
为什么在计算标准时用平方数据点与平均值点的差,可以客观反映数据的分布特点呢?
首先,平方数据差,可以避免正负相加,互相抵消的问题。其次这种方式是很类似于欧几里德空间里的两点之间的距离的计算的。当数据差异更加分散时,标准差会更大…而这正是我们想要的。

还有一点在平方和平方根上使用代数比在绝对值上更容易。有时候数值的准确性并不是必要的,能说明和反映问题才是必要的,这个思想很重要。

请添加图片描述

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/122751.html

(0)
上一篇 2025-10-14 12:20
下一篇 2025-10-14 12:33

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信