【连续介质力学】张量场

【连续介质力学】张量场文章详细介绍了张量场的概念 包括标量场 向量场和二阶张量场 并探讨了它们的梯度 散度和旋度等重要性质

大家好,欢迎来到IT知识分享网。

张量场

张量场表示张量 T ( x ⃗ , t ) T(\vec x, t) T(x
,t)
在空间 x ⃗ \vec x x
和时间 t t t中如何变化,将张量场视为可微函数

如果一个张量场不依赖于时间,则此张量场称为定常场,例如 T = T ( x ⃗ ) T = T(\vec x) T=T(x
)
;相反,如果一个张量场只依赖时间则称为均匀场,就是说 T ( t ) T(t) T(t)在每个位置 x ⃗ \vec x x
都有相同的值

标量场

定常标量场 ϕ = ϕ ( x ⃗ ) \phi = \phi(\vec x) ϕ=ϕ(x
)
,有连续的值 ∂ ϕ ∂ x 1 , ∂ ϕ ∂ x 2 , ∂ ϕ ∂ x 3 \frac{\partial \phi}{\partial x_1}, \frac{\partial \phi}{\partial x_2}, \frac{\partial \phi}{\partial x_3} x1ϕ,x2ϕ,x3ϕ。在点 x ⃗ \vec x x
的函数值为 ϕ ( x ⃗ ) \phi(\vec x) ϕ(x
)
,在另一个点 x ⃗ + d x ⃗ \vec x + d\vec x x
+
dx
的函数值为 ϕ ( x ⃗ + d x ⃗ ) \phi(\vec x + d\vec x) ϕ(x
+
dx
)
,那么函数 ϕ \phi ϕ的微分定义如下:
ϕ ( x ⃗ + d x ⃗ ) − ϕ ( x ⃗ ) ≡ d ϕ ϕ ( x 1 + d x 1 , x 2 + d x 2 , x 3 + d x 3 ) − ϕ ( x 1 , x 2 , x 3 ) ≡ d ϕ \phi(\vec x + d\vec x)-\phi(\vec x)\equiv d\phi\\ \phi(x_1+dx_1, x_2+dx_2, x_3+dx_3)-\phi(x_1, x_2, x_3)\equiv d\phi ϕ(x
+
dx
)
ϕ(x
)
dϕϕ(x1+dx1,x2+dx2,x3+dx3)ϕ(x1,x2,x3)dϕ

对于任意的连续函数 ϕ ( x 1 , x 2 , x 3 ) \phi(x_1, x_2, x_3) ϕ(x1,x2,x3) d ϕ d\phi dϕ d x 1 , d x 2 , d x 3 dx_1, dx_2, dx_3 dx1,dx2,dx3线性相关,这种线性关系可以以微分的链式法则来给出:
d ϕ = ∂ ϕ ∂ x 1 d x 1 + ∂ ϕ ∂ x 2 d x 2 + ∂ ϕ ∂ x 3 d x 3 d\phi = \frac{\partial \phi}{\partial x_1}dx_1+\frac{\partial \phi}{\partial x_2}dx_2+\frac{\partial \phi}{\partial x_3}dx_3 dϕ=x1ϕdx1+x2ϕdx2+x3ϕdx3

张量的分量关于 x i x_i xi的导数,可以由以下微分算子表示:
∂ ∗ ∂ x i ≡ ∗ , i \frac{\partial \ast}{\partial x_i}\equiv \ast_{,i} xi,i

梯度

标量场的梯度
梯度 ∇ x ⃗ ϕ \nabla_{\vec x}\phi x
ϕ
或者 g r a d ϕ grad \phi gradϕ定义为:
在这里插入图片描述
其中,算子 ∇ x ⃗ \nabla_{\vec x} x
叫Nabla符号,将上式表示成笛卡尔坐标基:
在这里插入图片描述
在这里插入图片描述
所以, ∇ x ⃗ ϕ \nabla_{\vec x}\phi x
ϕ
在笛卡尔坐标系中的分量:
( ∇ x ⃗ ) 1 ≡ ∂ ϕ ∂ x 1 ; ( ∇ x ⃗ ) 2 ≡ ∂ ϕ ∂ x 2 ; ( ∇ x ⃗ ) 3 ≡ ∂ ϕ ∂ x 3 ; (\nabla_{\vec x})_1 \equiv \frac{\partial \phi}{\partial x_1}; \quad (\nabla_{\vec x})_2 \equiv \frac{\partial \phi}{\partial x_2}; \quad (\nabla_{\vec x})_3 \equiv \frac{\partial \phi}{\partial x_3}; \quad (x
)1
x1ϕ;(x
)2
x2ϕ;(x
)3
x3ϕ;







Nabla符号 ∇ x ⃗ \nabla_{\vec x} x
定义为:
∇ x ⃗ = ∂ ∂ x i e ^ i ≡ ∂ , i e ^ i \boxed{\nabla_{\vec x}=\frac{\partial }{\partial x_i}\hat e_i\equiv \partial_{,i}\hat e_i} x
=xie^i,ie^i

∇ , x ⃗ \nabla_{,\vec x} ,x
的几何意义

  • ∇ x ⃗ \nabla_{\vec x} x
    的方向是垂直于等值面的,例如垂直于等值面 ϕ = c o n s t \phi = const ϕ=const ∇ x ⃗ \nabla_{\vec x} x
    的方向指向 ϕ \phi ϕ增长最快的方向
  • ∇ x ⃗ \nabla_{\vec x} x
    的大小是 ϕ \phi ϕ改变的速率,例如 ϕ \phi ϕ的梯度

在这里插入图片描述

向量场 v ⃗ ( x ⃗ ) \vec v (\vec x) v
(x
)
的梯度

g r a d ( v ⃗ ) ≡ ∇ x ⃗ v ⃗ grad(\vec v)\equiv\nabla_{\vec x}\vec v grad(v
)
x
v

表示成:
∇ x ⃗ v ⃗ = ∂ v i e ^ i ∂ x j ⨂ e ^ j = ( v i e ^ i ) , j ⨂ e ^ j = v i , j e ^ i ⨂ e ^ j \nabla_{\vec x}\vec v=\frac{\partial v_i \hat e_i}{\partial x_j}\bigotimes \hat e_j=(v_i \hat e_i)_{,j}\bigotimes \hat e_j=v_{i,j}\hat e_i \bigotimes \hat e_j x
v
=
xjvie^ie^j=(vie^i),je^j=vi,je^ie^j



因此,可以在笛卡尔坐标系中定义一个张量场 ( ∗ ( x ⃗ , t ) ) (*(\vec x, t)) ((x
,t))
的梯度为:
∇ x ⃗ ( ∗ ) = ∂ ∗ ∂ x j ⨂ e ^ j ( 在笛卡尔坐标系中的张量场的梯度 ) \boxed{\nabla_{\vec x}(*)=\frac{\partial *}{\partial x_j}\bigotimes \hat e_j}(在笛卡尔坐标系中的张量场的梯度) x
()=xje^j
(在笛卡尔坐标系中的张量场的梯度)

二阶张量场 T ( x ⃗ ) T(\vec x) T(x
)
的梯度

∇ x ⃗ T = ∂ T i j e ^ i ⨂ e ^ j ∂ x k ⨂ e ^ k = T i j , k e ^ i ⨂ e ^ j ⨂ e ^ k \nabla_{\vec x}T = \frac{\partial T_{ij}\hat e_i \bigotimes \hat e_j}{\partial x_k}\bigotimes \hat e_k=T_{ij, k}\hat e_i\bigotimes \hat e_j \bigotimes \hat e_k x
T=
xkTije^ie^je^k=Tij,ke^ie^je^k

问题1.41求出函数 f ( x 1 , x 2 ) = cos ⁡ ( x 1 ) + exp ⁡ x 1 x 2 f(x_1, x_2)=\cos(x_1)+\exp^{x_1x_2} f(x1,x2)=cos(x1)+expx1x2在点 ( x 1 = 0 , x 2 = 1 ) (x_1=0, x_2=1) (x1=0,x2=1) 的梯度

在这里插入图片描述

问题1.42 u ⃗ ( x ⃗ ) \vec u(\vec x) u
(x
)
是一个定常场

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


散度

向量场 v ⃗ ( x ⃗ ) \vec v(\vec x) v
(x
)
的散度
,标记如下:
d i v ( v ⃗ ) ≡ ∇ x ⃗ ⋅ v ⃗ div(\vec v)\equiv \nabla_{\vec x}\cdot \vec v div(v
)
x
v

表示为:
d i v ( v ⃗ ) ≡ ∇ x ⃗ ⋅ v ⃗ = ∇ x ⃗ v ⃗ : 1 = T r ( ∇ x ⃗ v ⃗ ) div(\vec v)\equiv\nabla_{\vec x}\cdot \vec v=\nabla_{\vec x}\vec v:1=Tr(\nabla_{\vec x}\vec v) div(v
)
x
v
=
x
v
:
1=Tr(x
v
)

那么:
在这里插入图片描述
笛卡尔坐标系下的算子:
∇ x ⃗ ⋅ ( ∗ ) = ∂ ( ∗ ) ∂ x k ⋅ e ^ k ( 笛卡尔坐标系下 ( ∗ ) 的散度 ) \boxed{\nabla_{\vec x}\cdot (*)=\frac{\partial (*)}{\partial x_k}\cdot \hat e_k}(笛卡尔坐标系下(*)的散度) x
()=xk()e^k
(笛卡尔坐标系下()的散度)







可以验证,当张量场作用散度时,其秩降低一阶

二阶张量场 T ( x ⃗ ) T(\vec x) T(x
)
的散度

二阶张量场 T T T的散度定义为 ∇ x ⃗ ⋅ 1 = ∇ x ⃗ T : 1 \nabla_{\vec x}\cdot 1=\nabla_{\vec x}T:1 x
1=x
T:
1
,得到一个向量:
在这里插入图片描述
NOTE:注意了,在处理张量场的梯度和散度时,
例如 ∇ x ⃗ v ⃗ \nabla_{\vec x}\vec v x
v
(向量场的梯度)、 ∇ x ⃗ T \nabla_{\vec x}T x
T
(二阶张量场的梯度)、 ∇ x ⃗ ⋅ T \nabla_{\vec x}\cdot T x
T
(二阶张量场的散度),这不意味着在对向量和张量之间进行张量算子操作,
例如 ∇ x ⃗ v ⃗ ≠ ( ∇ ⃗ x ⃗ ) ⨂ v ⃗ \nabla_{\vec x}\vec v\neq ( \vec \nabla_{\vec x})\bigotimes \vec v x
v
=
(
x
)v
∇ x ⃗ T ≠ ( ∇ ⃗ x ⃗ ) ⨂ v ⃗ \nabla_{\vec x}T\neq (\vec \nabla_{\vec x})\bigotimes \vec v x
T=
(
x
)v
以及 ∇ x ⃗ ⋅ T ≠ ( ∇ ⃗ x ⃗ ) ⋅ ( T ) \nabla_{\vec x}\cdot T \neq (\vec \nabla_{\vec x})\cdot (T) x
T=(
x
)
(T)
,等



∇ x ⃗ \nabla_{\vec x} x
必须是一个作用在完整张量场的算子,所以张量必须在算子的内部

定义 拉普拉斯算子 ∇ 2 \nabla^2 2 为:
在这里插入图片描述
那么,向量场 v ⃗ \vec v v
的拉普拉斯向量
为:
在这里插入图片描述


问题1.43 令 a ⃗ \vec a a
b ⃗ \vec b b
是向量,证明等式 ∇ x ⃗ ⋅ ( a ⃗ + b ⃗ ) = ∇ x ⃗ ⋅ a ⃗ + ∇ x ⃗ ⋅ b ⃗ \nabla_{\vec x}\cdot (\vec a + \vec b)=\nabla_{\vec x}\cdot \vec a+\nabla_{\vec x}\cdot \vec b x
(a
+
b
)=
x
a
+
x
b
成立

在这里插入图片描述

问题1.44 求出 ( ∇ x ⃗ a ⃗ ) ⋅ b ⃗ (\nabla_{\vec x}\vec a)\cdot \vec b (x
a
)
b

在这里插入图片描述

问题1.45 证明以下关系成立

在这里插入图片描述
在这里插入图片描述

旋度

向量场的旋度
向量场 v ⃗ ( x ⃗ ) \vec v(\vec x) v
(x
)
的旋度: c u r l ( v ⃗ ) ≡ r o t ( v ⃗ ) ≡ ∇ x ⃗ ∧ v ⃗ curl(\vec v)\equiv rot(\vec v)\equiv \nabla_{\vec x} \wedge \vec v curl(v
)
rot(v
)
x
v
,并且用笛卡尔坐标基表示:
∇ ⃗ x ⃗ ∧ ( ∗ ) = ∂ ∂ x j e ^ j ∧ ( ∗ ) ( 在笛卡尔坐标系下的张量场的旋度 ) \boxed{\vec \nabla_{\vec x}\wedge (*)=\frac{\partial }{\partial x_j}\hat e_j \wedge (*)(在笛卡尔坐标系下的张量场的旋度)}
x
()=xje^j()(在笛卡尔坐标系下的张量场的旋度)


我们在问题1.18里证明了反对称张量 ( x ⃗ ⨂ a ⃗ ) s k e w (\vec x \bigotimes \vec a)^{skew} (x
a
)skew
的轴向量是 1 2 ( a ⃗ ∧ x ⃗ ) \frac{1}{2}(\vec a \wedge \vec x) 21(a
x
)
,因此反对称张量 W = ( ∇ ⃗ x ⃗ v ⃗ ) s k e w = [ ( v ⃗ ) ⨂ ∇ ⃗ x ⃗ ] s k e w W = (\vec \nabla_{\vec x}\vec v)^{skew}=[(\vec v) \bigotimes \vec \nabla_{\vec x}]^{skew} W=(
x
v
)skew=
[(v
)
x
]skew
的轴向量是 1 2 ( ∇ ⃗ x ⃗ ∧ v ⃗ ) \frac{1}{2}(\vec \nabla_{\vec x}\wedge \vec v) 21(
x
v
)

如上所示,旋度描述了向量场的旋转趋势

总结
在这里插入图片描述

  • r o t ( λ a ⃗ ) = ∇ ⃗ x ⃗ ∧ ( λ a ⃗ ) = λ ( ∇ ⃗ x ⃗ ∧ a ⃗ ) + ( ∇ x ⃗ λ ∧ a ⃗ ) rot(\lambda \vec a)=\vec \nabla_{\vec x}\wedge (\lambda \vec a)=\lambda (\vec \nabla_{\vec x}\wedge \vec a)+( \nabla_{\vec x} \lambda \wedge \vec a) rot(λa
    )=

    x
    (λa
    )=
    λ(
    x
    a
    )+
    (x
    λ
    a
    )

    ∇ ⃗ x ⃗ ∧ ( λ a ⃗ ) \vec \nabla_{\vec x}\wedge (\lambda \vec a)
    x
    (λa
    )
    的结果是一个向量,分量为:
    在这里插入图片描述
    所以有: r o t ( λ a ⃗ ) = ∇ ⃗ x ⃗ ∧ ( λ a ⃗ ) = λ ( ∇ ⃗ x ⃗ ∧ a ⃗ ) + ( ∇ x ⃗ λ ∧ a ⃗ ) rot(\lambda \vec a)=\vec \nabla_{\vec x}\wedge (\lambda \vec a)=\lambda(\vec \nabla_{\vec x}\wedge \vec a)+(\nabla_{\vec x}\lambda \wedge \vec a) rot(λa
    )=

    x
    (λa
    )=
    λ(
    x
    a
    )+
    (x
    λ
    a
    )



  • ∇ ⃗ x ⃗ ∧ ( a ⃗ ∧ b ⃗ ) = ( ∇ x ⃗ ⋅ b ⃗ ) a ⃗ − ( ∇ a ⃗ ⋅ a ⃗ ) b ⃗ + ( ∇ x ⃗ a ⃗ ) ⋅ b ⃗ − ( ∇ x ⃗ b ⃗ ) ⋅ a ⃗ \vec \nabla_{\vec x}\wedge (\vec a \wedge \vec b)=(\nabla_{\vec x}\cdot \vec b)\vec a-(\nabla_{\vec a}\cdot \vec a)\vec b+(\nabla_{\vec x}\vec a)\cdot \vec b-(\nabla_{\vec x}\vec b)\cdot \vec a
    x
    (a
    b
    )=
    (x
    b
    )a
    (a
    a
    )b
    +
    (x
    a
    )
    b
    (x
    b
    )
    a

    由于有: ( a ⃗ ∧ b ⃗ ) = ϵ k i j a i b j (\vec a \wedge \vec b)=\epsilon_{kij}a_ib_j (a
    b
    )=
    ϵkijaibj
    ,因此:
    在这里插入图片描述
    并且有: ϵ k i j = ϵ i j k \epsilon_{kij}=\epsilon_{ijk} ϵkij=ϵijk ϵ i j k ϵ l p k = δ i l δ j p − δ i p δ j l \epsilon_{ijk}\epsilon_{lpk}=\delta_{il}\delta_{jp}-\delta_{ip\delta_{jl}} ϵijkϵlpk=δilδjpδipδjl,那么:
    在这里插入图片描述
    可以验证: [ ( ∇ x ⃗ a ⃗ ) ⋅ b ⃗ ] l = a l , p b p [(\nabla_{\vec x}\vec a)\cdot \vec b]_l=a_{l,p}b_p [(x
    a
    )
    b
    ]l=
    al,pbp
    [ ( ∇ x ⃗ ⋅ a ⃗ ) b ⃗ ] l = a p , p b l [(\nabla_{\vec x}\cdot \vec a)\vec b]_l=a_{p,p}b_l [(x
    a
    )b
    ]l=
    ap,pbl
    [ ( ∇ x ⃗ ⋅ b ⃗ ) a ⃗ ] l = a l b p , p [(\nabla_{\vec x}\cdot \vec b)\vec a]_l=a_lb_{p,p} [(x
    b
    )a
    ]l=
    albp,p
    [ ( ∇ x ⃗ b ⃗ ) ⋅ a ⃗ ] l = a p b l , p [(\nabla_{\vec x} \vec b)\cdot \vec a]_l=a_pb_{l,p} [(x
    b
    )
    a
    ]l=
    apbl,p





  • ∇ ⃗ x ⃗ ∧ ( ∇ ⃗ x ⃗ ∧ a ⃗ ) = ∇ x ⃗ ( ∇ x ⃗ ⋅ a ⃗ ) − ∇ x ⃗ 2 a ⃗ \vec \nabla_{\vec x}\wedge (\vec \nabla_{\vec x}\wedge \vec a)=\nabla_{\vec x}(\nabla_{\vec x}\cdot \vec a)-\nabla_{\vec x}^2 \vec a
    x
    (
    x
    a
    )=
    x
    (x
    a
    )
    x
    2
    a

    由于: ( ∇ x ⃗ ∧ a ⃗ ) i = ϵ i j k a k , j (\nabla_{\vec x}\wedge \vec a)_i=\epsilon_{ijk}a_k,j (x
    a
    )i=
    ϵijkak,j
    ,因此:
    在这里插入图片描述
    考虑: ϵ q l i ϵ i j k = ϵ q l i ϵ j k i = δ q j δ l k − δ q k δ l j \epsilon_{qli}\epsilon_{ijk}=\epsilon_{qli}\epsilon_{jki}=\delta_{qj}\delta_{lk}-\delta_{qk}\delta_{lj} ϵqliϵijk=ϵqliϵjki=δqjδlkδqkδlj,有:
    在这里插入图片描述
    其中, [ ∇ x ⃗ ( ∇ x ⃗ ⋅ a ⃗ ) ] q = a k , k q [\nabla_{\vec x}(\nabla_{\vec x}\cdot \vec a)]_q=a_{k,kq} [x
    (x
    a
    )]q=
    ak,kq
    [ ∇ x ⃗ 2 a ⃗ ] q = a q , l l [\nabla_{\vec x}^2\vec a]_q=a_{q,ll} [x
    2
    a
    ]q=
    aq,ll





  • ∇ x ⃗ ⋅ ( ψ ∇ x ⃗ ⋅ a ⃗ ) = ψ ∇ x ⃗ 2 ϕ + ( ∇ x ⃗ ψ ) ⋅ ( ∇ x ⃗ ϕ ) \nabla_{\vec x} \cdot(\psi \nabla_{\vec x}\cdot \vec a)=\psi \nabla_{\vec x}^2\phi+(\nabla_{\vec x}\psi)\cdot (\nabla_{\vec x}\phi) x
    (ψx
    a
    )=
    ψx
    2
    ϕ+
    (x
    ψ)
    (x
    ϕ)

    在这里插入图片描述
    ψ \psi ψ ϕ \phi ϕ是标量场,以上等式由以下等式推导而来:
    在这里插入图片描述


保守场

一个向量场 b ⃗ ( x ⃗ , t ) \vec b(\vec x, t) b
(x
,t)
被称为保守的,如果存在一个可导的标量场 ϕ ( x ⃗ , t ) \phi(\vec x, t) ϕ(x
,t)
,满足:
b ⃗ = ∇ x ⃗ ϕ \vec b = \nabla_{\vec x}\phi b
=
x
ϕ

如果一个函数 ϕ \phi ϕ满足以上关系,则称 ϕ \phi ϕ b ⃗ ( x ⃗ , t ) \vec b(\vec x, t) b
(x
,t)
的势函数。
b ⃗ ( x ⃗ , t ) \vec b(\vec x, t) b
(x
,t)
是保守的的一个不充分条件是 ∇ ⃗ x ⃗ ∧ b ⃗ = 0 ⃗ \vec \nabla_{\vec x}\wedge \vec b=\vec 0
x
b
=
0
。也就是说,给定一个保守场,其旋度 ∇ ⃗ x ⃗ ∧ b ⃗ \vec \nabla_{\vec x}\wedge \vec b
x
b
等于0。反而,如果一个向量场的旋度为0,不代表这个向量场是保守的

1.46 ϕ \phi ϕ是一个标量场, u ⃗ \vec u u
是一个向量场,证明 ∇ x ⃗ ⋅ ( ∇ x ⃗ ∧ v ⃗ ) = 0 \nabla_{\vec x}\cdot (\nabla_{\vec x}\wedge \vec v)=0 x
(x
v
)=
0
以及 ∇ ⃗ x ⃗ ∧ ( ∇ x ⃗ ϕ ) = 0 ⃗ \vec \nabla_{\vec x}\wedge (\nabla_{\vec x}\phi)=\vec 0
x
(x
ϕ)=
0

在这里插入图片描述
在这里插入图片描述
参考教材:
Eduardo W.V. Chaves, Notes On Continuum Mechanics


免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/125798.html

(0)
上一篇 2025-09-24 12:00
下一篇 2025-09-24 12:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信