关于S参数的理解

关于S参数的理解无源网络如电阻 电感 电容 连接器 电缆 PCB 线等在高频下会呈现射频 微波方面的特性

大家好,欢迎来到IT知识分享网。

无源网络如电阻、电感、电容、连接器、电缆、PCB线等在高频下会呈现射频、微波方面的特性。S参数是表征无源网络特性的一种模型,在仿真中即用S参数来代表无源网络,在射频、微波和信号完整性领域的应用都很广泛。 本文将从S参数的定义,S参数的表达方式,S参数的特性,混合模式S参数,S参数测量等多个方面介绍S参数的一些最基本的知识。

笔者个人觉得比较糟糕的一个定义是在堪称经典的国外教材上,叫《射频电路设计——理论与应用》(电子工业出版社,Reinhold Ludwig和Pavel Bretchko著)。 在其第111页的描述是:“简单地说,S参量表达的是电压波,它使我们可以用入射电压波和反射电压的方式定义网络的输入、输出关系。 根据图示,可以定义为归一化入射波电压an和归一化反射电压波bn。” 这个教材有英文版在国内出版,我没查英文是怎么表达的,但这个翻译过来的中文定义确是很难懂。

我们打一个比方:假设流速极快的水流过了两个连接在一起但直径不一样的水管,在这两个水管的交界处会产生什么现象? 一部分水会从一个水管流到另外一个水管,还有一部分水会反射回来,但如果水的流速很慢,所有的水都会从一个水管全部流到另外一个水管,没有水反射回来的。  我们很容易理解这个现象。 那么,我们将水管换成电阻,电阻两端连接的是导线,当电信号从导线流经电阻时会发生什么现象?  答案是:当电信号的速率很低或直流信号时,所有的电信号能量除了转换为热能消耗掉,其余的都会流出电阻。 输入电流等于输出电流。也就是说可以应用我们在大学里学习到的基尔霍夫电压和电流定律。 但如果电信号的速率很高,“电阻”就不是我们过去意义上理解的电阻了,电阻会表现出射频特性。 流过电阻的电信号一部分会被反射回来,而且反射回来信号的相位不一定是和入射的信号完全反相,是一个矢量。  当我们将电阻作为一个“黑箱子”,来描述电阻的特征时,该怎么描述? S参数即是一种描述电阻在表现为射频特性的高频信号激励下的电气行为的工具,而且它的描述的方法是以电阻对入射信号作出“反应”即“散射”后,从电阻“外部”“散射”出的可测量的物理量来实现的,测量到的物理量的大小反应出不同特性的电阻会对相同的输入信号“散射”的程度不一样,这种不一样的散射程度就可以用来描述电阻的特性,而且这种表达方法已成为作为一种非常有用的电气模型。 这些物理量被称为入射电压,反射电压,传输电压,等等。 不只是电阻会表现这种特性,很多无源器件如电缆,连接器,PCB走线等传输介质都会表现出这种特性,因此都可以用S参数来表征。图1表示了S参数的基本概念。

关于S参数的理解

图1  S参数的概念

关于S参数的理解

图2  S参数矩阵

S参数是两个物理量的比值,因此严格讲是没有单位的,但通常当表示幅值的S参数时,一般按对数的算法,最终用dB来表示,表1是dB和衰减比值之间的关系。

关于S参数的理解

关于S参数的理解

S11=b1/a1=反射功率/入射功率。 S11表示在输出端端接匹配情况下的输入端反射系数,通常被称为回波损耗(return loss)。

S21=b2/a1=输出功率/输入功率。 S21表示在输出端端接匹配情况下的前向传输增益(系数),通常被称为插入损耗(inset loss)。   

测量“反向”S参数时,在输出端施加激励信号,在输入端接匹配电阻,如图4所示。

关于S参数的理解

图4   二端口网络反向S参数测量示意图

S22=b2/a2=反射功率/入射功率。 S22表示在输入端端接匹配情况下的输出端反射系数。

S12=b1/a2=输出功率/输入功率。 S12表示在输入端端接匹配情况下的反向传输增益(系数)。

刚开始记这些参数时可能有些容易混淆。正向和反向是相对表达上的方便而言的,无源器件一般来说正向和反向的一致的结果。其实,我们牢记住S21表示b2/a1就可以了,其它的就可以类推了。相同的后缀S11,S22表示反射,比较容易记住。

可以用下面的两个关系式来完整地描述二端口网络的输入、输出和S参数的关系。用图形描述这些关系式如图5所示。

关于S参数的理解

单端四端口或更多端口网络的S参数和二端口网络的测量方法类似。在某一端施加激励信号,其它所有端口端接匹配电阻。得到的S参数矩阵如图6所示。

关于S参数的理解

图6 四端口网络S参数矩阵

四端口网络S参数中,S11,S22,S33,S44分别表示各端口的回波损耗/反射系数。S21,S12,S34,S43表示插入损耗/传输增益。 S13,S31,S24,S42表示近端串扰(near end crosstalk)。S14,S41,S23,S32表示远端串扰(far end crosstalk)。 图7表示了串扰的物理意义。近端串扰表示在某端口施加激励,在相近的一端的另外一个端口耦合到的信号。远端串扰的含义就是在较远的一端耦合到的信号。示波器指标中有一项通道隔离度其实就是串扰的一种表现。

关于S参数的理解

关于S参数的理解

关于S参数的理解

关于S参数的理解

关于S参数的理解 表示为功率散射比,这个值越小,说明损耗越大。

关于S参数的理解

    单端四端口S参数和混合模式S参数之间是可以相互转换的,如图11所示。因此通过测量单端四端口的S参数来推导出混合模式的S参数。

关于S参数的理解

混合模式S参数矩阵四个象限中包含了四种类型的混合模式S参数。第一象限以Scc开头的表示共模S参数,第四象限以Sdd开头的表示差模S参数。 其它两象限的Sdc表示差模向共模的转换,Scd分别共模向差模的转换。如果这两根线有很好的对称性,Sdc和Scd为零,表示差模和共模是完全独立的。 Sdd21表示差分端口1到差分端口2的差模增益,其它符号的含义类推。

用混合模式S参数表示两端口差分系统的输出和输入之间的关系式如下:bd1表示1端口的差分输出,ad1表示1端口的差分输入。

关于S参数的理解

关于S参数的理解

其实在谈到VNA和TDR两种方法测量S参数的区别时,我们会自然联系到示波器的前端频率响应曲线的测量方法。 可以通过传统的扫频描点的方法(调节正弦波信号源的频率,然后分别测量不同频率时示波器测量到的峰峰值)来测量频响曲线,但也可以通过快沿信号输入到示波器,对采样到的快沿信号做FFT的方法来快速简便地测量频响曲线。 这两种方法测量示波器频响曲线的原理上的区别和测量S参数的两种方法的区别是一个道理。

近些年来三个仪器厂商基于TDR原理测量S参数的实践证明了两种测量方法在频率不是特别高的时候符合度非常高,如图14所示为两种方法测量的S参数的结果对比。但基于TDR的方法存在有动态范围不太高的缺点。基于TDR测量S参数源于TDR的原理,但通过专利算法在提高动态范围上获得突破,而且在一键操作实现自动化校准方面的创新,具备时域分析能力和S参数文件可以直接被SI仿真软件调用等特点。

关于S参数的理解

S参数相关教程:

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/129147.html

(0)
上一篇 2025-08-26 15:33
下一篇 2025-08-26 15:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信