大家好,欢迎来到IT知识分享网。
K ( k ) K(k) K(k) 是第一类完全椭圆积分,令 a ≡ a 0 ≡ 1 , b ≡ b 0 ≡ k ′ , k = 1 − k ′ 2 , a\equiv a_0\equiv 1,\quad b\equiv b_0\equiv k’, \quad k=\sqrt{1-k’^2}, a≡a0≡1,b≡b0≡k′,k=1−k′2, 等式 (6) 为
2 π K ( 1 − k ′ 2 ) = 2 π K ( k ) , {2\over \pi}K(\sqrt{1-k’^2}\,) = {2\over \pi}K(k), π2K(1−k′2)=π2K(k),
定义
K ′ ( k ) ≡ K ( 1 − k 2 ) = K ( k ′ ) . (7) K'(k)\equiv K(\sqrt{1-k^2}\,)=K(k’). \tag 7 K′(k)≡K(1−k2)=K(k′).(7)
应用变量算术平均和几何平均进行变量代换
1 a K ( 1 − b 2 a 2 ) = 2 a + b K ( 1 − 4 a b ( a + b ) 2 ) = 2 a + b K ( a 2 + b 2 − 2 a b ( a + b ) 2 ) = 2 a + b K ( a − b a + b ) (8) \begin{aligned} {1\over a}K\left({\sqrt{1-{b^2\over a^2}}\,}\right)&=& {2\over a+b}K\left({\sqrt{1-{4ab\over (a+b)^2}}\,}\right)\\ &=& {2\over a+b} K\left({\sqrt{a^2+b^2-2ab\over(a+b)^2}\,}\right)\\ &=& {2\over a+b}K\left({a-b\over a+b}\right) \end{aligned} \tag 8 a1K(1−a2b2)===a+b2K(1−(a+b)24ab)a+b2K((a+b)2a2+b2−2ab)a+b2K(a+ba−b)(8)
得到
K ( 1 − b 2 a 2 ) = 2 1 + b a K ( 1 − b a 1 + b a ) . (9) K\left({\sqrt{1-{b^2\over a^2}}\,}\right)= {2\over 1+{b\over a}}K\left({1-{b\over a}\over 1+{b\over a}}\right). \tag 9 K(1−a2b2)=1+ab2K(1+ab1−ab).(9) 令
k ′ ≡ b a , k ≡ 1 − k ′ 2 , k’\equiv {b\over a}, \quad k\equiv \sqrt{1-k’^2}, k′≡ab,k≡1−k′2, 得到
K ( k ) = 2 1 + k ′ K ( 1 − k ′ 1 + k ′ ) . (10) K(k)={2\over 1+k’} K\left({1-k’\over 1+k’}\right). \tag {10} K(k)=1+k′2K(1+k′1−k′).(10)
令
l ≡ ( 1 − k ′ ) / ( 1 + k ′ ) , l\equiv (1-k’)/(1+k’), l≡(1−k′)/(1+k′), 得 k ′ = 1 − l 1 + l , k = 1 − k ′ 2 = 2 l 1 + l , k’={1-l\over 1+l}, \quad k=\sqrt{1-k’^2}= {2\sqrt{l}\over 1+l}, k′=1+l1−l,k=1−k′2=1+l2l, 因此 K ( k ) = 1 k + 1 K ( 2 k 1 + k ) . (11) K(k)={1\over k+1} K\left({2\sqrt{k}\over 1+k}\right). \tag {11} K(k)=k+11K(1+k2k).(11) 类似地可以得到
E ( k ) = 1 + k 2 E ( 2 k 1 + k ) + k ′ 2 2 K ( k ) (12) E(k)={1+k\over 2}E\left({2\sqrt{k}\over 1+k}\right)+{k’^2\over 2}K(k) \tag {12} E(k)=21+kE(1+k2k)+2k′2K(k)(12) E ( k ) = ( 1 + k ′ ) E ( 1 − k ′ 1 + k ′ ) − k ′ K ( k ) . (13) E(k)=(1+k’)E\left({1-k’\over 1+k’}\right)-k’K(k). \tag {13} E(k)=(1+k′)E(1+k′1−k′)−k′K(k).(13) 这里 E ( k ) E(k) E(k) 为第二类完全椭圆积分。
K ′ ( k ) = K ( k ′ ) = 2 1 + k K ( 1 − k 1 + k ) = 2 1 + k K ′ ( 1 − ( 1 − k 1 + k ) 2 ) = 2 1 + k K ′ ( 2 k 1 + k ) (14) \begin{aligned} K'(k)&=&K(k’) = {2\over 1+k} K\left({1-k\over 1+k}\right)\\ &=& {2\over 1+k}K’\left({\sqrt{1-\left({1-k\over 1+k}\right)^2}\,}\right)\\ &=& {2\over 1+k}K’\left({2\sqrt{k}\over 1+k}\right) \end{aligned} \tag {14} K′(k)===K(k′)=1+k2K(1+k1−k)1+k2K′⎝⎛1−(1+k1−k)2⎠⎞1+k2K′(1+k2k)(14)
K ′ ( k ) = 1 1 + k ′ K ( 2 k ′ 1 + k ′ ) = 1 1 + k ′ K ′ ( 1 − k ′ 1 + k ′ ) , (15) K'(k)={1\over 1+k’} K\left({2\sqrt{k’}\over 1+k’}\right)= {1\over 1+k’} K’\left({1-k’\over 1+k’}\right), \tag {15} K′(k)=1+k′1K(1+k′2k′)=1+k′1K′(1+k′1−k′),(15)
E ′ ( k ) = ( 1 + k ) E ′ ( 2 k 1 + k ) − k K ′ ( k ) (16) E'(k)=(1+k)E’\left({2\sqrt{k}\over 1+k}\right)-kK'(k) \tag {16} E′(k)=(1+k)E′(1+k2k)−kK′(k)(16)
E ′ ( k ) = ( 1 + k ′ 2 ) E ′ ( 1 − k ′ 1 + k ′ ) + k 2 2 K ′ ( k ) . (17) E'(k)=\left({1+k’\over 2}\right)E’\left({1-k’\over 1+k’}\right)+{k^2\over 2}K'(k).\tag {17} E′(k)=(21+k′)E′(1+k′1−k′)+2k2K′(k).(17)
K ′ ( k ) K ( k ) = 2 K ′ ( 2 k 1 + k ) K ( 2 k 1 + k ) = 1 2 K ′ ( 1 − k ′ 1 + k ′ ) K ( 1 − k ′ 1 + k ′ ) (18) {K'(k)\over K(k)}=2 {K’\left({2\sqrt{k}\,\over 1+k}\right)\over K\left({2\sqrt{k}\,\over 1+k}\right)} = {1\over 2} {K’\left({1-k’\over 1+k’}\right)\over K\left({1-k’\over 1+k’}\right)} \tag {18} K(k)K′(k)=2K(1+k2k)K′(1+k2k)=21K(1+k′1−k′)K′(1+k′1−k′)(18)
Ref.
https://archive.lib.msu.edu/crcmath/math/math/e/e099.htm
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/130212.html