部分和(partial sum)在算法求解中的作用

部分和(partial sum)在算法求解中的作用1 部分和的引入并非什么高级深奥的技巧 但却十分有用

大家好,欢迎来到IT知识分享网。

  • C++ 的 STL 库的 <numeric> 头文件的 partial_sum 函数已实现了对某一序列的 partial sum。
    • partial_sum(first, last, dest);


1. 部分和的引入

并非什么高级深奥的技巧,但却十分有用。

假设按照降序排列 N 个学生的考试成绩并保存到数组 scores[],现在想要编写求出从第 a 名到第 b 名成绩的函数 average(a, b),最简单的方法是,将 scores[a] 到 scores[b] 的乘积全部相加,然后除以 b-a+1。

这种方法的循环次数最大会达到

O(N)
如果只计算 1 次平均值,这种时复杂度就足够了。但多次调用 average() 的话,就需要对函数进行优化。

此时需要用到部分和(partial sum)(或者累加和)的概念。部分和就是,对从数组起始位置到当前任一位置求和并保存的数组(类似于概率理论中的分布函数的概念)。

pSum[j]=i=0jscores[i]

预先计算 psum 就能在 O(1) 时间内求出 scores[] 在特定区间的和(君子)。假设 psum[-1] = 0,那么,scores[a] 和 scores[b] 之间的和可按照如下方式计算:

psum[b]psum[ba+1]

部分和的简单计算:

int A[101], pSum[101], pSqSum[101]; sort(A, A+n); pSum[0] = A[0];  pSqSum[0] = A[0]*A[0]; for (int i = 1; i < n; ++i){ 
    pSum = pSum[i-1] + A[i]; pSqSum = pSqSum[i-1] + A[i]*A[i]; }

一定千万要注意,在求解某一区域的部分和的时候,比如 [a, b]pSum[a] 本身是包含数组在 a 处的值的,

// ∑_a^b A[i] ⇒ pSum[b] - (a == 0 ? 0 : pSum[a - 1]);

2. 均值、方差

v==1ba+1i=ab(A[i]μ)2i=abA[i]2ba+1μ2

3. 从一维到二维数组

记, psum[y,x]=i=0yj=0xA[i,j] ,则从 (y1,x1) (y2,x2) 之间矩形所包含元素的和,

sum([y1,x1],[y2,x2])=psum(y2,x2)psum(y21,x1)psum(y1,x21)+psum(y11,x11)

int gridSum(const vector<vector<int>>& psum, int y1, int x1, int y2, int x2) { int ret = psum[y2][x2]; if (y1 > 0) ret -= psum[y1-1][x2]; if (x1 > 0) ret -= psum[y2][x1-1]; if (x1 > 0 && y1 > 0) ret += psum[y1-1][x1-1]; return ret; }

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/132263.html

(0)
上一篇 2025-08-01 19:00
下一篇 2025-08-01 19:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信