(六)速度梯度与加速度梯度

(六)速度梯度与加速度梯度对于速度场 v v x t vig i vec v vec v vec x t v i vec g iv v x t vig i 其右梯度 称作速度梯度 可写作 v v xj g j v

大家好,欢迎来到IT知识分享网。

1. 速度梯度、变形率张量与物质旋律张量

对于速度场 v ⃗ = v ⃗ ( x ⃗ , t ) = v i g ⃗ i \vec{v}=\vec{v}(\vec{x},t)=v^i\vec{g}_i v
=
v
(x
,t)=
vig
i
,其右梯度 (称作速度梯度) 可写作
v ⃗ ▽ = ∂ v ⃗ ∂ x j ⊗ g ⃗   j = v i ∣ j g ⃗ i ⊗ g ⃗ j ≜ L       = ∂ v ⃗ ∂ X A ∂ X A ∂ x j ⊗ g ⃗   j = ∂ v ⃗ ∂ X A ⊗ C ⃗ A = v B ∣ ∣ A C ⃗ B ⊗ C ⃗ A = C ⃗ ∙ A ⊗ C ⃗ A       = ( C ⃗ ∙ B ⊗ G ⃗ B ) ⋅ ( G ⃗ A ⊗ C ⃗ A ) = F ∙ ⋅ F − 1 \begin{aligned} & \vec{v}\triangledown =\dfrac{\partial \vec{v}}{\partial x^j}\otimes\vec{g}\ ^j =v^i|_j\vec{g}_i\otimes\vec{g}^j\triangleq\bold L\\\\ &\ \ \ \ \ =\dfrac{\partial \vec{v}}{\partial X^A}\dfrac{\partial X^A}{\partial x^j}\otimes\vec{g}\ ^j =\dfrac{\partial \vec{v}}{\partial X^A}\otimes\vec{C}^A =v^B||_A\vec{C}_B\otimes\vec{C}^A =\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A \\\\ &\ \ \ \ \ =(\overset{\bullet}{\vec{C}}_B\otimes\vec{G}^B)\cdot(\vec{G}_A\otimes\vec{C}^A) =\overset{\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned} v
=xjv
g
 j=vijg
i
g
j
L
     =XAv
xjXAg
 j=XAv
C
A
=vBAC
B
C
A
=C
A
C
A
     =(C
B
G
B
)(G
A
C
A
)=FF1

速度梯度的对称部分称作变形率张量
D = 1 2 ( L + L T ) = 1 2 ( v ⃗ ▽ + ▽ v ⃗ ) \bold D=\dfrac{1}{2}(\bold L+\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown+\triangledown\vec{v}) D=21(L+LT)=21(v
+
v
)

速度梯度的反对称部分称作物质旋率张量
W = 1 2 ( L − L T ) = 1 2 ( v ⃗ ▽ − ▽ v ⃗ ) \bold W=\dfrac{1}{2}(\bold L-\bold L^T)=\dfrac{1}{2}(\vec{v}\triangledown-\triangledown\vec{v}) W=21(LLT)=21(v
v
)

其轴向量为:
ω ⃗ = 1 2 ( ▽ × v ⃗ ) \vec{\omega}=\dfrac{1}{2}(\triangledown\times\vec{v}) ω
=
21(×v
)

此外还可以表示为:
ω ⃗ = − 1 4 ϵ : ( C ⃗ ∙ A ⊗ C ⃗ A − C ⃗ A ⊗ C ⃗ ∙ A ) = 1 2 C ⃗ A × C ⃗ ∙ A \vec{\omega}=-\dfrac{1}{4}\epsilon:(\overset{\bullet}{\vec{C}}_A\otimes\vec{C}^A -\vec{C}^A\otimes\overset{\bullet}{\vec{C}}_A ) =\dfrac{1}{2}\vec{C}^A\times\overset{\bullet}{\vec{C}}_A ω
=
41ϵ:(C
A
C
A
C
A
C
A
)=
21C
A
×
C
A

定义 处处满足 w ⃗ = 0 \vec{w}=0 w
=
0
W = 0 \bold W=0 W=0 的运动称为无旋运动









2. 加速度梯度

加速度的 (右) 梯度 定义为:
a ⃗ ▽ = ∂ a ⃗ ∂ x i ⊗ g ⃗ i = ∂ a ⃗ ∂ X A ⊗ C ⃗ A = a B ∣ ∣ A C ⃗ B ⊗ C ⃗ A   = C ⃗ ∙ ∙ A ⊗ C ⃗ A = ( C ⃗ ∙ ∙ A ⊗ G ⃗ A ) ⋅ ( G ⃗ B ⊗ C ⃗ B ) = F ∙ ∙ ⋅ F − 1 \begin{aligned} & \vec{a}\triangledown =\dfrac{\partial \vec{a}}{\partial x^i}\otimes\vec{g}^i =\dfrac{\partial \vec{a}}{\partial X^A}\otimes\vec{C}^A =a^B||_A\vec{C}_B\otimes\vec{C}^A\\\\ &\quad\ =\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{C}^A =(\overset{\bullet\bullet}{\vec{C}}_A\otimes\vec{G}^A)\cdot(\vec{G}_B\otimes\vec{C}^B) =\overset{\bullet\bullet}{\bold F}\cdot\overset{-1}{\bold F} \end{aligned} a
=xia
g
i
=XAa
C
A
=aBAC
B
C
A
 =C
∙∙
A
C
A
=(C
∙∙
A
G
A
)(G
B
C
B
)=F∙∙F1

继续讨论前,给出如下命题:

对于任意仿射量 Ψ \Psi Ψ,有:
( Ψ ∙ ) T = ( Ψ T ) ∙ \left(\overset{\bullet}{\Psi}\right)^T=\overset{\bullet}{\left(\Psi^T\right)} (Ψ)T=(ΨT)
证明:对任意向量 a ⃗ , b ⃗ \vec{a},\vec{b} a
b
满足:
a ⃗ ⋅ Ψ ⋅ b ⃗ = b ⃗ ⋅ Ψ T ⋅ a ⃗ \vec{a}\cdot\bold{\Psi}\cdot\vec{b}=\vec{b}\cdot\bold{\Psi}^T\cdot\vec{a} a
Ψb
=
b
ΨTa

那么,
a ⃗ ∙ ⋅ Ψ ⋅ b ⃗ + a ⃗ ⋅ Ψ ∙ ⋅ b ⃗ + a ⃗ ⋅ Ψ ⋅ b ⃗ ∙ = b ⃗ ∙ ⋅ ( Ψ T ) ⋅ a ⃗ + b ⃗ ⋅ ( Ψ T ) ∙ ⋅ a ⃗ + b ⃗ ⋅ ( Ψ T ) ⋅ a ⃗ ∙ \overset{\bullet}{\vec{a}}\cdot\bold{\Psi}\cdot\vec{b} +\vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} +\vec{a}\cdot\bold{\Psi}\cdot\overset{\bullet}{\vec{b}} =\overset{\bullet}{\vec{b}}\cdot(\bold{\Psi}^T)\cdot\vec{a} +\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} +\vec{b}\cdot(\bold{\Psi}^T)\cdot\overset{\bullet}{\vec{a}} a
Ψb
+
a
Ψb
+
a
Ψb
=
b
(ΨT)a
+
b
(ΨT)a
+
b
(ΨT)a


a ⃗ ⋅ Ψ ∙ ⋅ b ⃗ = b ⃗ ⋅ ( Ψ T ) ∙ ⋅ a ⃗ ⟹ b ⃗ ⋅ [ ( Ψ ∙ ) T − ( Ψ T ) ∙ ] ⋅ a ⃗ = 0 \vec{a}\cdot\overset{\bullet}{\bold{\Psi}}\cdot\vec{b} =\vec{b}\cdot\overset{\bullet}{(\bold{\Psi}^T)}\cdot\vec{a} \Longrightarrow \vec{b}\cdot\left[\left(\overset{\bullet}{\Psi}\right)^T-\overset{\bullet}{(\bold{\Psi}^T)}\right]\cdot\vec{a} =0 a
Ψb
=
b
(ΨT)a
b
[(Ψ)T(ΨT)]a
=
0

a ⃗ , b ⃗ \vec{a},\vec{b} a
b
的任意性可知命题成立。故此二者可以不加区分运算的先后次序。另外还表明:对称仿射量的物质导数是对称仿射量,反对称仿射量的物质导数为反对称仿射量。







加速度梯度的反对称部分记为:
J = 1 2 ( a ⃗ ▽ − ▽ a ⃗ ) \bold J=\dfrac{1}{2}(\vec{a}\triangledown-\triangledown\vec{a}) J=21(a
a
)

3. Lagrange-Cauchy 定理

[Lagrange-Cauchy 定理] \quad 对于加速度为势的梯度的运动,若某一时刻运动是无旋的,则运动始终是无旋的。

证明:由于加速度为势的梯度,则
a ⃗ = ▽ α ( x ⃗ , t ) \vec{a}=\triangledown\alpha(\vec{x},t) a
=
α(x
,t)

那么
( ▽ α ) ▽ = ∂ ∂ x j ( ∂ α ∂ x i ) g ⃗ i ⊗ g ⃗ j ▽ ( ▽ α ) = ∂ ∂ x j ( ∂ α ∂ x i ) g ⃗ j ⊗ g ⃗ i = ∂ ∂ x i ( ∂ α ∂ x j ) g ⃗ i ⊗ g ⃗ j ( ▽ α ) ▽ = ▽ ( ▽ α ) \begin{aligned} &(\triangledown\alpha)\triangledown =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^i\otimes\vec{g}^j \\\\ &\triangledown(\triangledown\alpha) =\dfrac{\partial }{\partial x^j}\left(\dfrac{\partial\alpha}{\partial x^i}\right)\vec{g}^j\otimes\vec{g}^i =\dfrac{\partial }{\partial x^i}\left(\dfrac{\partial\alpha}{\partial x^j}\right)\vec{g}^i\otimes\vec{g}^j \\\\ & (\triangledown\alpha)\triangledown=\triangledown(\triangledown\alpha) \end{aligned} (α)=xj(xiα)g
i
g
j
(α)=xj(xiα)g
j
g
i
=xi(xjα)g
i
g
j
(α)=(α)

则,加速度梯度的反对称部分为
J = ( ▽ α ) ▽ − ▽ ( ▽ α ) 2 = 0 \bold J =\dfrac{(\triangledown\alpha)\triangledown-\triangledown(\triangledown\alpha)}{2} =0 J=2(α)(α)=0
那么
D D t ( F T ⋅ W ⋅ F ) = F T ⋅ ( D ⋅ W + W ∙ + W ⋅ D ) ⋅ F = F T ⋅ J ⋅ F = 0 \dfrac{D}{Dt}(\bold F^T\cdot\bold W\cdot\bold F) ={\bold F}^T\cdot(\bold D\cdot\bold W+\overset{\bullet}{\bold W}+\bold W\cdot\bold D)\cdot\bold F ={\bold F}^T\cdot\bold J\cdot\bold F=0 DtD(FTWF)=FT(DW+W+WD)F=FTJF=0
若运动某一时刻无旋,即某一时刻 W = 0 \bold W=0 W=0,则运动过程中始终有:
F T ⋅ W ⋅ F = 0 \bold F^T\cdot\bold W\cdot\bold F=0 FTWF=0
由于 F \bold F F 正则,故在运动过程中始终有:
W = 0 \bold W=0 W=0
即,运动始终无旋。











命题 \quad 若速度场为势的梯度,则加速度场也为势的梯度

证明:由于速度有势,则
v ⃗ = ▽ φ ( x ⃗ , t ) \vec{v}=\triangledown\varphi(\vec{x},t) v
=
φ(x
,t)

那么
a ⃗ = v ⃗ ∙ = ▽ φ ∙ = ( ▽ φ ) ′ + ( v ⃗ ▽ ) ⋅ v ⃗ \vec{a} =\overset{\bullet}{\vec{v}} =\overset{\bullet}{\triangledown\varphi} =(\triangledown\varphi)’+(\vec{v}\triangledown)\cdot\vec{v} a
=
v
=
φ=(φ)+(v
)
v

由于
( ▽ × v ⃗ ) × v ⃗ = ( v ⃗ ▽ − ▽ v ⃗ ) ⋅ v ⃗ = v ⃗ ▽ ⋅ v ⃗ − ▽ v ⃗ ⋅ v ⃗   ▽ v ⃗ ⋅ v ⃗ = ▽ ( v ⃗ ⋅ v ⃗ 2 )   ▽ × v ⃗ = ▽ × ( ▽ φ ) = ∂ 2 φ ∂ x i ∂ x j ϵ i j k g ⃗ k = 0 (\triangledown\times\vec{v})\times\vec{v} =(\vec{v}\triangledown-\triangledown\vec{v})\cdot\vec{v} =\vec{v}\triangledown\cdot\vec{v}-\triangledown\vec{v}\cdot\vec{v}\\\ \\ \triangledown\vec{v}\cdot\vec{v} =\triangledown\left(\dfrac{\vec{v}\cdot\vec{v}}{2}\right) \\\ \\ \triangledown\times\vec{v} =\triangledown\times(\triangledown\varphi) =\dfrac{\partial^2\varphi}{\partial x^i\partial x^j}\epsilon^{ijk}\vec{g}_k=0 (×v
)×
v
=
(v
v
)
v
=
v
v
v
v
 v
v
=
(2v
v
)
 ×v
=
×(φ)=xixj2φϵijkg
k
=
0


a ⃗ = ▽ ( φ ′ + v ⃗ ⋅ v ⃗ 2 ) \vec{a}=\triangledown\left(\varphi’+\dfrac{\vec{v}\cdot\vec{v}}{2}\right) a
=
(φ+2v
v
)

证毕。







4. 涡旋传输定理

5. 变形率 D \bold D D 与物质旋率 W \bold W W 的几何意义

5.1. 线元的物质导数与相关的相对变化率

由于任意线元 d x ⃗ d\vec{x} dx
的物质导数
为:
D D t ( d x ⃗ ) = D D t ( F ⋅ d X ⃗ ) = F ∙ ⋅ X ⃗ = ( F ∙ ⋅ F − 1 ) ⋅ ( F ⋅ d X ⃗ ) = L ⋅ d x ⃗ \dfrac{D}{Dt}(d\vec{x}) =\dfrac{D}{Dt}(\bold F\cdot d\vec{X}) =\overset{\bullet}{\bold F}\cdot\vec{X} =(\overset{\bullet}{\bold F}\cdot\bold F^{-1})\cdot(\bold F\cdot d\vec{X}) =\bold L\cdot d\vec{x} DtD(dx
)=
DtD(FdX
)=
FX
=
(FF1)(FdX
)=
Ldx

5.1.1. 线元长度的相对变化率

任意线元 d x ⃗ d\vec{x} dx
长度 ∣ d x ⃗ ∣ |d\vec{x}| dx
的物质导数
为:
D D t ( ∣ d x ⃗ ∣ ) = D D t d x ⃗ ⋅ d x ⃗ = 1 2 ∣ d x ⃗ ∣ [ D D t ( d x ⃗ ) ⋅ d x ⃗ + d x ⃗ ⋅ D D t ( d x ⃗ ) ] = 1 ∣ d x ⃗ ∣ ( d x ⃗ ⋅ L T + L 2 ⋅ d x ⃗ ) = 1 ∣ d x ⃗ ∣ ( d x ⃗ ⋅ D ⋅ d x ⃗ ) = l ⃗ ⋅ ( D ⋅ d x ⃗ ) \begin{aligned} &\dfrac{D}{Dt}(|d\vec{x}|) =\dfrac{D}{Dt}\sqrt{d\vec{x}\cdot d\vec{x}} =\dfrac{1}{2|d\vec{x}|}\left[\dfrac{D}{Dt}(d\vec{x})\cdot d\vec{x}+d\vec{x}\cdot\dfrac{D}{Dt}(d\vec{x})\right]\\\\ &\uad\uad=\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\dfrac{\bold L^T+\bold L}{2}\cdot d\vec{x}\right) =\dfrac{1}{|d\vec{x}|}\left(d\vec{x}\cdot\bold D\cdot d\vec{x}\right) =\vec{l}\cdot(\bold D\cdot d\vec{x}) \end{aligned} DtD(dx
)=DtDdx
dx

=2∣dx
1
[DtD(dx
)dx
+dx
DtD(dx
)]
=dx
1
(dx
2LT+Ldx
)
=dx
1
(dx
Ddx
)
=l
(Ddx
)

可理解为 D ⋅ d x ⃗ \bold D\cdot d\vec{x} Ddx
l ⃗ \vec{l} l
上的投影。故沿单位切向量 l ⃗ \vec{l} l
的线元 d x ⃗ d\vec{x} dx
的长度的相对变化率 d l d_l dl 为:

d l ⃗ ≜ ∣ d x ⃗ ∣ ∙ ∣ d x ⃗ ∣ = d x ⃗ ∣ d x ⃗ ∣ ⋅ D ⋅ d x ⃗ ∣ d x ⃗ ∣ = l ⃗ ⋅ D ⋅ l ⃗ d_{\vec{l}} \triangleq\dfrac{\overset{\bullet}{|d\vec{x}|}}{|d\vec{x}|} =\dfrac{d\vec{x}}{|d\vec{x}|}\cdot\bold D\cdot \dfrac{d\vec{x}}{|d\vec{x}|} =\vec{l}\cdot\bold D\cdot\vec{l} dl
dx
dx
=
dx
dx
Ddx
dx
=
l
Dl



上述讨论实际上说明:在各时刻,线元长度的相对变化率取极值(驻值)的方向为伸长率张量的主方向,长度相对变化率的大小为伸长率张量的对应的驻值。

5.1.2. 线元方向的变化率 (与 W 相关)

考虑线元 d x ⃗ d\vec{x} dx
单位切向量 l ⃗ \vec{l} l
的物质导数:
D   l ⃗ D t = D D t ( d x ⃗ ∣ d x ⃗ ∣ ) = 1 ∣ d x ⃗ ∣ D D t ( d x ⃗ ) − d x ⃗ ∣ d x ⃗ ∣ 2 D D t ( ∣ d x ⃗ ∣ ) = L ⋅ d x ⃗ ∣ d x ⃗ ∣ − d x ⃗ ∣ d x ⃗ ∣ ( l ⃗ ⋅ D ⋅ l ⃗ ) = ( L − d l ⃗ I ) ⋅ l ⃗ \begin{aligned} &\dfrac{D\ \vec{l}}{Dt} =\dfrac{D}{Dt}\left(\dfrac{d\vec{x}}{|d\vec{x}|}\right) =\dfrac{1}{|d\vec{x}|}\dfrac{D}{Dt}(d\vec{x})-\dfrac{d\vec{x}}{|d\vec{x}|^2}\dfrac{D}{Dt}(|d\vec{x}|)\\\\ &\uad\uad\uad\uad=\bold L\cdot\dfrac{d\vec{x}}{|d\vec{x}|}-\dfrac{d\vec{x}}{|d\vec{x}|}(\vec{l}\cdot\bold D\cdot\vec{l})\\\\ &\uad\uad\uad\uad=(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} \end{aligned} DtD l
=DtD(dx
dx
)
=dx
1
DtD(dx
)dx
2
dx
DtD(dx
)
=Ldx
dx
dx
dx
(l
Dl
)
=(Ldl
I)l

其中, d l ⃗ d_{\vec{l}} dl
l ⃗ \vec{l} l
方向线元长度的相对变化率。又
D   l ⃗ D t ⋅ l ⃗ = l ⃗ ⋅ ( L − d l ⃗ I ) ⋅ l ⃗ = l ⃗ ⋅ ( L − D ) ⋅ l ⃗ = l ⃗ ⋅ W ⋅ l ⃗ = 0 \dfrac{D\ \vec{l}}{Dt}\cdot\vec{l} =\vec{l}\cdot(\bold L-d_{\vec{l}}\bold I)\cdot\vec{l} =\vec{l}\cdot(\bold L-\bold D)\cdot\vec{l} =\vec{l}\cdot\bold W\cdot\vec{l}=0 DtD l
l
=
l
(Ldl
I)
l
=
l
(LD)l
=
l
Wl
=
0

由于物质旋率张量是反对称张量。这也说明了单位切向量的物质导数与自身垂直的几何含义



5.1.3. 线元夹角余弦的变化率

在当前时刻,存在两线元 d x ⃗ ( 1 ) d\vec{x}_{(1)} dx
(1)
d x ⃗ ( 2 ) d\vec{x}_{(2)} dx
(2)
,其单位切向量分别为: l ⃗ ( 1 ) 、 l ⃗ ( 2 ) \vec{l}_{(1)}、\vec{l}_{(2)} l
(1)
l
(2)
,夹角为: θ \theta θ。那么
D D t ( c o s θ ) = D D t ( l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) ) = l ⃗ ( 1 ) ⋅ D   l ⃗ ( 2 ) D t + D   l ⃗ ( 1 ) D t ⋅ l ⃗ ( 2 ) = l ⃗ ( 1 ) ⋅ ( L − d l ⃗ ( 2 ) I ) ⋅ l ⃗ ( 2 ) + ( L − d l ⃗ ( 1 ) I ) ⋅ l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) = l ⃗ ( 1 ) ⋅ ( L − d l ⃗ ( 2 ) I ) ⋅ l ⃗ ( 2 ) + l ⃗ ( 1 ) ⋅ ( L T − d l ⃗ ( 1 ) I ) ⋅ l ⃗ ( 2 ) = 2 l ⃗ ( 1 ) ⋅ D ⋅ l ⃗ ( 2 ) − ( d l ⃗ ( 1 ) + d l ⃗ ( 1 ) ) l ⃗ ( 1 ) ⋅ l ⃗ ( 2 ) \begin{aligned} &\quad\dfrac{D}{Dt}(cos\theta) =\dfrac{D}{Dt}(\vec{l}_{(1)}\cdot\vec{l}_{(2)})\\\\ &=\vec{l}_{(1)}\cdot\dfrac{D\ \vec{l}_{(2)}}{Dt}+\dfrac{D\ \vec{l}_{(1)}}{Dt}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\left(\bold L-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(1)}\cdot\vec{l}_{(2)}\\\\ &=\vec{l}_{(1)}\cdot\left(\bold L-d_{\vec{l}_{(2)}}\bold I\right)\cdot\vec{l}_{(2)}+\vec{l}_{(1)}\cdot\left(\bold L^T-d_{\vec{l}_{(1)}}\bold I\right)\cdot\vec{l}_{(2)}\\\\ &=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)}-\left(d_{\vec{l}_{(1)}}+d_{\vec{l}_{(1)}}\right)\vec{l}_{(1)}\cdot\vec{l}_{(2)} \end{aligned} DtD(cosθ)=DtD(l
(1)
l
(2)
)
=l
(1)
DtD l
(2)
+DtD l
(1)
l
(2)
=l
(1)
(Ldl
(2)
I)
l
(2)
+(Ldl
(1)
I)
l
(1)
l
(2)
=l
(1)
(Ldl
(2)
I)
l
(2)
+l
(1)
(LTdl
(1)
I)
l
(2)
=2l
(1)
Dl
(2)
(dl
(1)
+dl
(1)
)
l
(1)
l
(2)

特别地,若考虑 θ = 90 ° \theta=90\degree θ=90°,则
D D t ( c o s θ ) ∣ θ = 90 ° = − D θ D t ∣ θ = 90 ° = 2 l ⃗ ( 1 ) ⋅ D ⋅ l ⃗ ( 2 ) \left.\dfrac{D}{Dt}(cos\theta)\right|_{\theta=90\degree}=-\left.\dfrac{D\theta}{Dt}\right|_{\theta=90\degree}=2\vec{l}_{(1)}\cdot\bold D\cdot\vec{l}_{(2)} DtD(cosθ)
θ=90°
=
DtDθ
θ=90°
=
2l
(1)
Dl
(2)



5.2. 体元的物质导数与与其相对变化率

5.2.1. 体元的物质导数与与其相对变化率

5.2.2 体元物质导数的另一种表达

对任意仿射量 F 、 B \bold {F、B} FB 与 实数 δ \delta δ, 记
F ^ = F + δ B \bold{\hat{F}}=\bold F +\delta\bold B F^=F+δB

J ^ ≜ d e t ( F ^ ) = d e t ( F + δ B ) = d e t ( F ) d e t ( I + δ B F − 1 ) \hat{\mathscr J}\triangleq det(\bold{\hat{F}}) =det(\bold F +\delta\bold B) =det(\bold F)det(\bold I+\delta\bold B\bold F^{-1}) J^det(F^)=det(F+δB)=det(F)det(I+δBF1)
进一步有:
D J ^ D δ ∣ δ = 0 = d e t ( F ) t r ( B F − 1 ) \left.\dfrac{D\hat{\mathscr J}}{D\delta}\right|_{\delta=0} =det(\bold F)tr(\bold B\bold F^{-1}) DJ^
δ=0
=
det(F)tr(BF1)

上式运用了特征多项式展开的相关性质。得到上述结论后,令上式中 F \bold F F 代表变形梯度,且
δ = t , B = F ∙ \delta= t,\bold B=\overset{\bullet}{\bold F} δ=tB=F
则有:
D   d e t ( F + t F ∙ ) D t ∣ t = 0 = J t r L = J t r D \left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}=\mathscr{J}tr{\bold L}=\mathscr{J}tr{\bold D} DtD det(F+tF)
t=0
=
JtrL=JtrD


[ D   d e t ( F + t F ∙ ) D t ∣ t = 0 ] d v 0 = t r ( D ) d v = d v ∙ \left[\left.\dfrac{D\ det(\bold F +t\overset{\bullet}{\bold F})}{Dt}\right|_{t=0}\right]dv_0 =tr(\bold D)dv =\overset{\bullet}{dv}
DtD det(F+tF)
t=0

dv0=
tr(D)dv=dv











5.3. 有向面元的物质导数与其面积的相对变化率

5.4. 物质旋率张量 W 的几何意义

当前时刻,伸长率张量 D \bold D D 的单位特征向量为: v ⃗ α ( α = 1 , 2 , 3 ) \vec{v}_\alpha(\alpha=1,2,3) v
α
(α=
1,2,3)
,对应的特征值分别为: d α ( α = 1 , 2 , 3 ) d_\alpha(\alpha=1,2,3) dα(α=1,2,3),考虑沿当前 v ⃗ α \vec{v}_\alpha v
α
方向的线元的方向变化率:
l ⃗ ∙ ( v ⃗ α ) = l ⃗ ∙ ∣ l ⃗ = v ⃗ α \overset{\bullet}{\vec{l}}(\vec{v}_\alpha)=\overset{\bullet}{\vec{l}}|_{\vec{l}=\vec{v}_\alpha} l
(v
α
)=
l
l
=v
α

需要注意的是:
l ⃗ ∙ ( v ⃗ α ) ≠ v ⃗ α ∙ \overset{\bullet}{\vec{l}}(\vec{v}_\alpha)\ne\overset{\bullet}{\vec{v}_\alpha} l
(v
α
)=
v
α

因为对线元的单位方向的物质导数表示研究的始终是同一线元,但前一时刻与下一时刻伸长率张量的特征向量可能与不同线元相重合。
l ⃗ ∙ ( v ⃗ α ) = ( L − d α I ) ⋅ v ⃗ α = ( L − D ) ⋅ v ⃗ α = W ⋅ v ⃗ α = ω ⃗ × v ⃗ α \overset{\bullet}{\vec{l}}(\vec{v}_\alpha) =(\bold L-d_{\alpha}\bold I)\cdot\vec{v}_{\alpha} =(\bold L-\bold D)\cdot\vec{v}_{\alpha} =\bold W\cdot\vec{v}_{\alpha} =\vec{\omega}\times\vec{v}_{\alpha} l
(v
α
)=
(LdαI)v
α
=
(LD)v
α
=
Wv
α
=
ω
×
v
α

这表明:物质旋率张量是当前时刻与伸长率张量特征方向相重合的物质线元的转动速率张量。另外
D D t ( d x ⃗ ) = L ⋅ d x ⃗ = ∂ v ⃗ ∂ x i d x i = d v ⃗ = D ⋅ d x ⃗ + W ⋅ d x ⃗ \dfrac{D}{Dt}(d\vec{x}) =\bold L\cdot d\vec{x}=\dfrac{\partial\vec{v}}{\partial x^i}dx^i=d\vec{v} =\bold{D}\cdot d\vec{x}+\bold{W}\cdot d\vec{x} DtD(dx
)=
Ldx
=
xiv
dxi=
dv
=
Ddx
+
Wdx







免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/138328.html

(0)
上一篇 2025-06-13 19:10
下一篇 2025-06-13 19:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信