BiRefNet:高分辨率图像分割的利器

BiRefNet:高分辨率图像分割的利器BiRefNet 突破分辨率限制 实现高精度图像分割 利用双边参考和逐步细化技术 BiRefNet 能够生成精细且准确的分割结果 并应用于建筑检测 目标提取等场景 为图像分割领域带来革命性突破 birefnet

大家好,欢迎来到IT知识分享网。

在这里插入图片描述
阿里联合南开等高校及科研机构发布一种名为 BiRefNet 的高分辨率图像分割框架,引入了一种新颖的双边参考框架(BiRefNet),用于高分辨率二分图像分割(DIS)。该框架由两个基本组件组成:定位模块(LM)和提出的双边参考(BiRef)重建模块(RM)。LM 利用全局语义信息辅助目标定位。在 RM 中,利用 BiRef 进行重建过程,其中图像的层次化块作为源参考,梯度图作为目标参考。这些组件协同工作生成最终的预测图。
paper:Bilateral Reference for High-Resolution Dichotomous Image Segmentation
github:https://github.com/ZhengPeng7/BiRefNet
demo:https://www.birefnet.top/segment



核心理念

BiRefNet是一种新颖的双边参考框架,它由两个基本组件构成:定位模块(LM)和重建模块(RM)。通过双边参考(BiRef)技术,该框架能够有效地利用全局语义信息进行目标定位,并在重建过程中利用图像的分层补丁和梯度图进行细节重建。在这里插入图片描述

关键特性

  • 定位模块(LM):利用全局语义信息辅助目标定位。
  • 重建模块(RM):在重建过程中,使用BiRef技术,结合源图像和梯度图进行细节重建。
  • 双边参考模块(BiRef:包括具有源图像引导的内部参考和具有梯度监督的外部参考。该模块在重建预测的高分辨率结果方面表现出显著的效果。
  1. 定位模块(Localization Module, LM)
    功能:利用全局语义信息辅助目标定位。
    操作:通过变换器编码器(Transformer Encoder)提取不同阶段的特征,并将这些特征传递到相应的解码器阶段,同时通过全局平均池化层和全连接层进行分类,以获得更好的语义表示。

  2. 重建模块(Reconstruction Module, RM)
    功能:在重建过程中使用双边参考技术,结合源图像和梯度图进行细节重建。
    操作:采用重构块(Reconstruction Block, RB),在每个BiRef块中使用可变形卷积(Deformable Convolution)和分层接收场(Hierarchical Receptive Fields)来提取多尺度的特征。

在这里插入图片描述

  1. 双边参考(Bilateral Reference, BiRef)
    内在参考(Inward Reference):使用原始高分辨率图像的补丁与解码器阶段的输出特征结合,为每个阶段提供高分辨率信息。
    外在参考(Outward Reference):利用梯度标签吸引模型关注细节丰富的区域,通过梯度监督生成梯度参考注意力图。

目标函数

训练策略

  • 长训练与多阶段监督:通过长时间的训练和多阶段监督来提高模型在细节分割上的性能。
  • 区域级损失微调:使用区域级损失进行微调,以提高预测结果的二值化质量。
  • 上下文特征融合和图像金字塔输入:这些技术用于改善高分辨率图像的深度模型处理。
  • 其他训练细节:所有图像均调整大小为 1024×1024 用于训练和测试。生成的分割地图经过重新调整大小(即双线性插值),以便与相应的 GT 地图的原始大小进行评估。训练过程中唯一使用的数据增强技术是水平翻转。类别数 C 设置为 219,与 DIS-TR 中的定义一致。

结果

结果表明:从两个方面来看,BiRefNet 优于之前的 DIS 方法,即目标物体的位置和物体细节的更精确分割。例如,在 DIS-TE4 和 DIS-TE2的样本中,有邻近的干扰物吸引了其他模型的注意,产生了误报。相反,BiRefNet 消除了干扰物并准确分割了目标。在 DIS-TE3 和 DIS-VD 的样本中,BiRefNet在精确分割细节丰富的区域方面表现出色。与之前的方法相比, BiRefNet 能够清晰地分割细长的形状和曲线边缘。
在这里插入图片描述

技术优势

高性能: BiRefNet在多个任务上超越了特定任务的最新方法,包括DIS5K任务、HRSOD和COD,在平均Sm(结构相似性)指标上分别提高了6.8%、2.0%和5.6%。

实用性: 该技术不仅在理论上具有创新性,而且在实际应用中也展现出了极高的实用价值。例如,在建筑裂缝检测和高分辨率自然图像中的对象提取等领域,BiRefNet都能提供高质量的分割结果。

应用场景

在这里插入图片描述
在这里插入图片描述

其他分割样例:
在这里插入图片描述

在这里插入图片描述

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/140257.html

(0)
上一篇 2025-05-27 21:45
下一篇 2025-02-25 19:05

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信