大家好,欢迎来到IT知识分享网。
一、幂级数是什么?
由常数项乘以幂函数组成的无穷级数:
∑ n = 0 ∞ c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + … \sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots n=0∑∞cnxn=c0+c1x+c2x2+c3x3+…
它在 ( − R , R ) (-R,R) (−R,R)内一定收敛,通常是否取到端点要具体讨论。这里 R = 1 / lim n → ∞ ∣ c n + 1 c n ∣ R=1\Big/\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} }{c_{n}}\right| R=1/limn→∞∣∣∣cncn+1∣∣∣,且 R R R 可以为0或无穷大。
二、常见的幂级数
1 1 − x = 1 + x + x 2 + x 3 + x 4 + … = ∑ n = 0 ∞ x n , x ∈ ( − 1 , 1 ) \frac{1}{1-x} = 1+x+x^{2}+x^{3}+x^{4}+\ldots =\sum_{n=0}^{\infty} x^{n}, \quad x \in(-1,1) 1−x1=1+x+x2+x3+x4+…=n=0∑∞xn,x∈(−1,1)
e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + … = ∑ n = 0 ∞ x n n ! , x ∈ R e^{x} =1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots =\sum_{n=0}^{\infty} \frac{x^{n}}{n !}, \quad x \in R ex=1+x+2!x2+3!x3+4!x4+…=n=0∑∞n!xn,x∈R
cos x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + x 8 8 ! − ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! , x ∈ R \cos x =1-\frac{x^{2}}{2 !}+\frac{x^{4}}{4 !}-\frac{x^{6}}{6 !}+\frac{x^{8}}{8 !}-\cdots =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}, \quad x \in R cosx=1−2!x2+4!x4−6!x6+8!x8−⋯=n=0∑∞(−1)n(2n)!x2n,x∈R
sin x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + x 9 9 ! − ⋯ = ∑ n = 1 ∞ ( − 1 ) ( n − 1 ) x 2 n − 1 ( 2 n − 1 ) ! , x ∈ R \sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\frac{x^{7}}{7 !}+\frac{x^{9}}{9 !}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{(2 n-1) !}, \quad x \in R sinx=x−3!x3+5!x5−7!x7+9!x9−⋯=n=1∑∞(−1)(n−1)(2n−1)!x2n−1,x∈R
ln ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + x 5 5 − ⋯ = ∑ n = 1 ∞ ( − 1 ) ( n − 1 ) x n n = or ∑ n = 1 ∞ ( − 1 ) n + 1 x n n , ( x ∈ ( − 1 , 1 ] ) \ln (1+x) =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{n}}{n} \stackrel{\text { or }}{=} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n},\quad (x \in(-1,1] ) ln(1+x)=x−2x2+3x3−4x4+5x5−⋯=n=1∑∞(−1)(n−1)nxn= or n=1∑∞(−1)n+1nxn,(x∈(−1,1])
tan − 1 x = x − x 3 3 + x 5 5 − x 7 7 + x 9 9 − ⋯ = ∑ n = 1 ∞ ( − 1 ) ( n − 1 ) x 2 n − 1 2 n − 1 , ( x ∈ ( − 1 , 1 ] ) \tan ^{-1} x \quad =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{2 n-1} ,\quad (x \in(-1,1] ) tan−1x=x−3x3+5x5−7x7+9x9−⋯=n=1∑∞(−1)(n−1)2n−1x2n−1,(x∈(−1,1])
1 + x = 1 + x 2 − x 2 8 + x 3 16 + … , x ≥ − 1 \sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}+\ldots,\quad x \geq -1 1+x=1+2x−8x2+16x3+…,x≥−1
( 1 + x ) k = 1 + k x + k ( k − 1 ) 2 ! x 2 + k ( k − 1 ) ( k − 2 ) 3 ! x 3 + … = ∑ n = 0 ∞ ( k n ) x n , ∣ x ∣ < 1 (1+x)^{k}=1+k x+\frac{k(k-1)}{2 !} x^{2}+\frac{k(k-1)(k-2)}{3 !} x^{3}+\ldots=\sum_{n=0}^{\infty}\left(\begin{array}{l} k \\ n \end{array}\right) x^{n}, \quad |x|< 1 (1+x)k=1+kx+2!k(k−1)x2+3!k(k−1)(k−2)x3+…=n=0∑∞(kn)xn,∣x∣<1
暂时写上这些,有空再来补充。
三、幂级数重要结论:在收敛域内可逐项求导和积分
例1:( ∣ x ∣ < 1 |x|<1 ∣x∣<1)
1 ( 1 − x ) 2 = d d x ( 1 1 − x ) = d d x ( ∑ n = 0 ∞ x n ) = ∑ n = 1 ∞ n x n − 1 = 1 + 2 x + 3 x 2 + 4 x 3 + ⋯ \begin{aligned} \frac{1}{(1-x)^{2}} &=\frac{d}{d x}\left(\frac{1}{1-x}\right) \\ &=\frac{d}{d x}\left(\sum_{n=0}^{\infty} x^{n}\right) \\ &=\sum_{n=1}^{\infty} n x^{n-1} \\ &=1+2 x+3 x^{2}+4 x^{3}+\cdots \end{aligned} (1−x)21=dxd(1−x1)=dxd(n=0∑∞xn)=n=1∑∞nxn−1=1+2x+3x2+4x3+⋯
例2:( ∣ x ∣ < 1 |x|<1 ∣x∣<1)
ln ( 1 + x ) = ∫ 1 1 + x d x = ∫ ( ∑ n = 0 ∞ ( − 1 ) n x n ) d x = ( ∑ n = 0 ∞ ( − 1 ) n x n + 1 n + 1 ) + C = ∑ n = 0 ∞ ( − 1 ) n x n + 1 n + 1 = x − x 2 2 + x 3 3 − x 4 4 + ⋯ \begin{aligned} \ln (1+x) &=\int \frac{1}{1+x} d x \\ &=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x \\ &=\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}\right)+C \\ &=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \\ &=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \end{aligned} ln(1+x)=∫1+x1dx=∫(n=0∑∞(−1)nxn)dx=(n=0∑∞(−1)nn+1xn+1)+C=n=0∑∞(−1)nn+1xn+1=x−2x2+3x3−4x4+⋯
例3: 已知 d d x tan − 1 ( x ) = 1 1 + x 2 \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}} dxdtan−1(x)=1+x21, 1 1 + x 2 = ∑ n = 0 ∞ ( − x 2 ) n = ∑ n = 0 ∞ ( − 1 ) n x 2 n \frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} 1+x21=∑n=0∞(−x2)n=∑n=0∞(−1)nx2n,那么
KaTeX parse error: No such environment: eqnarray at position 8: \begin{̲e̲q̲n̲a̲r̲r̲a̲y̲}̲ \tan^{-…
由于 tan − 1 ( 0 ) = 0 \tan^{-1}(0)=0 tan−1(0)=0,因此 C = 0 C=0 C=0,所以得到上面的公式:
tan − 1 ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 = x − x 3 3 + x 5 5 − x 7 7 + ⋯ \tan^{-1}(x)= \sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{2n+1}=x – \frac{x^3}{3} + \frac{x^5}{5} – \frac{x^7}{7} + \cdots tan−1(x)=n=0∑∞(−1)n2n+1x2n+1=x−3x3+5x5−7x7+⋯
例4: 从 arctanh x \operatorname{arctanh} x arctanhx 出发我们能推出些啥结论? (注意不是 arctan \arctan arctan, 而是 tanh ( x ) = sinh ( x ) cosh ( x ) = e x − e − x e x + e − x \tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} tanh(x)=cosh(x)sinh(x)=ex+e−xex−e−x的反函数)
f ( x ) = arctanh x f ′ ( x ) = 1 1 − x 2 f ′ ′ ( x ) = 2 x ( 1 − x 2 ) 2 f ′ ′ ′ ( x ) = 2 ( 1 − x 2 ) 2 − 8 x 2 ( 1 − x 2 ) 3 \begin{aligned} f(x) &=\operatorname{arctanh} x \\ f^{\prime}(x) &=\frac{1}{1-x^{2}} \\ f^{\prime \prime}(x) &=\frac{2 x}{\left(1-x^{2}\right)^{2}} \\ f^{\prime \prime \prime}(x) &=\frac{2}{\left(1-x^{2}\right)^{2}}-\frac{8 x^{2}}{\left(1-x^{2}\right)^{3}} \end{aligned} f(x)f′(x)f′′(x)f′′′(x)=arctanhx=1−x21=(1−x2)22x=(1−x2)22−(1−x2)38x2
注意到 arctanh x = 1 1 − x 2 = ∑ n = 0 ∞ x 2 n , ( ∣ x ∣ < 1 ) \operatorname{arctanh} x = \frac{1}{1-x^2} = \sum_{n=0}^{\infty} x^{2n},(|x|<1) arctanhx=1−x21=∑n=0∞x2n,(∣x∣<1), 可以得出:
arctanh x = ∫ 0 x ( 1 + t 2 + t 4 + … ) d t = x + x 3 3 + x 5 5 + … \operatorname{arctanh} x=\int_{0}^{x}\left(1+t^{2}+t^{4}+\ldots\right) d t=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots arctanhx=∫0x(1+t2+t4+…)dt=x+3x3+5x5+…
当然还没结束:
f ( x ) = log 1 + x 1 − x = 1 2 log ( 1 + x ) − 1 2 log ( 1 − x ) = 1 2 ∫ 0 x ( 1 1 + t + 1 1 − t ) d t = ∫ 0 x d t 1 − t 2 = ∫ 0 x ( 1 + t 2 + t 4 + … ) d t = x + x 3 3 + x 5 5 + … = arctanh x \begin{aligned} f(x) &=\log \sqrt{\frac{1+x}{1-x}}\\ &=\frac{1}{2} \log (1+x)-\frac{1}{2} \log (1-x) \\ &=\frac{1}{2} \int_{0}^{x}\left(\frac{1}{1+t}+\frac{1}{1-t}\right) d t \\ &=\int_{0}^{x} \frac{d t}{1-t^{2}} \\ &=\int_{0}^{x}\left(1+t^{2}+t^{4}+\ldots\right) d t \\ &=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots \\ &=\operatorname{arctanh} x \end{aligned} f(x)=log1−x1+x=21log(1+x)−21log(1−x)=21∫0x(1+t1+1−t1)dt=∫0x1−t2dt=∫0x(1+t2+t4+…)dt=x+3x3+5x5+…=arctanhx
四、用幂级数求数项级数的和
例5: 求 ∑ n = 1 ∞ n 3 n \sum_{n=1}^{\infty} \frac{n}{3^{n}} ∑n=1∞3nn
f ( x ) = ∑ n = 0 ∞ n x n f ( x ) x = ∑ n = 0 ∞ n x n − 1 ∫ f ( x ) x d x = C + ∑ n = 0 ∞ x n ∫ f ( x ) x d x = C + 1 1 − x d d x ∫ f ( x ) x d x = − 1 ( 1 − x ) 2 f ( x ) x = 1 ( 1 − x ) 2 f ( x ) = x ( 1 − x ) 2 \begin{aligned} \quad f(x)&= \sum_{n=0}^{\infty} nx^n \\ \quad \frac{f(x)}{x}&= \sum_{n=0}^{\infty} nx^{n-1} \\ \quad \int \frac{f(x)}{x} \: dx&= C + \sum_{n=0}^{\infty} x^n \\ \quad \int \frac{f(x)}{x} \: dx&= C + \frac{1}{1 – x} \\ \quad \frac{d}{dx} \int \frac{f(x)}{x} \: dx&=-\frac{1}{(1 – x)^2} \\ \quad \frac{f(x)}{x}&= \frac{1}{(1 – x)^2} \\ \quad f(x)&= \frac{x}{(1 – x)^2} \end{aligned} f(x)xf(x)∫xf(x)dx∫xf(x)dxdxd∫xf(x)dxxf(x)f(x)=n=0∑∞nxn=n=0∑∞nxn−1=C+n=0∑∞xn=C+1−x1=−(1−x)21=(1−x)21=(1−x)2x
由于它在 ∣ x ∣ < 1 \mid x \mid < 1 ∣x∣<1内收敛,因此可令 x = 1 3 x=\frac{1}{3} x=31,有
f ( 1 3 ) = 1 3 ( 2 3 ) 2 = ∑ n = 0 ∞ n 3 n = ∑ n = 1 ∞ n 3 n = 3 4 f\left ( \frac{1}{3} \right ) = \frac{\frac{1}{3}}{\left ( \frac{2}{3} \right )^2} = \sum_{n=0}^{\infty} \frac{n}{3^n} = \sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4} f(31)=(32)231=n=0∑∞3nn=n=1∑∞3nn=43
例6: ∑ n = 0 ∞ ( n + 1 ) 2 π n \sum_{n=0}^{\infty} \frac{(n+1)^2}{\pi^n} ∑n=0∞πn(n+1)2
f ( x ) = ∑ n = 0 ∞ ( n + 1 ) 2 x n ∫ f ( x ) d x = C + ∑ n = 0 ∞ ( n + 1 ) x n + 1 ∫ f ( x ) d x x = C x + ∑ n = 0 ∞ ( n + 1 ) x n ∫ ∫ f ( x ) d x x d x = D + ∫ C x d x + ∑ n = 0 ∞ x n + 1 ∫ ∫ f ( x ) d x x d x = D + ∫ C x d x + x ∑ n = 0 ∞ x n ∫ ∫ f ( x ) d x x d x = D + ∫ C x d x + x 1 − x ∫ f ( x ) d x x = C x + ( 1 − x ) ( 1 ) − x ( − 1 ) ( 1 − x ) 2 ∫ f ( x ) d x x = C x + 1 ( 1 − x ) 2 ∫ f ( x ) d x = C + x ( 1 − x ) 2 f ( x ) = ( 1 − x ) 2 ( 1 ) − x ( 2 ( 1 − x ) ( − 1 ) ) ( 1 − x ) 4 f ( x ) = ( 1 − x ) 2 + 2 x ( 1 − x ) ( 1 − x ) 4 f ( x ) = ( 1 − x ) + 2 x ( 1 − x ) 3 \begin{aligned} \quad f(x)&= \sum_{n=0}^{\infty} (n + 1)^2 x^n \\ \quad \int f(x) \: dx&= C + \sum_{n=0}^{\infty} (n+1)x^{n+1} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \sum_{n=0}^{\infty} (n+1) x^n \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + \sum_{n=0}^{\infty} x^{n+1} \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + x \sum_{n=0}^{\infty} x^n \\ \quad \int \frac{\int f(x) \: dx}{x} \: dx&= D + \int \frac{C}{x} \: dx + \frac{x}{1 – x} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \frac{(1 – x)(1) – x(-1)}{(1 – x)^2} \\ \quad \frac{\int f(x) \: dx}{x}&= \frac{C}{x} + \frac{1}{(1 – x)^2} \\ \quad \int f(x) \: dx&= C + \frac{x}{(1 – x)^2} \\ \quad f(x)&= \frac{(1 – x)^2(1) – x(2(1 – x)(-1))}{(1 – x)^4} \\ \quad f(x)&= \frac{(1 – x)^2 + 2x(1 – x)}{(1 – x)^4} \\ \quad f(x)&= \frac{(1 – x) + 2x}{(1 – x)^3} \end{aligned} f(x)∫f(x)dxx∫f(x)dx∫x∫f(x)dxdx∫x∫f(x)dxdx∫x∫f(x)dxdxx∫f(x)dxx∫f(x)dx∫f(x)dxf(x)f(x)f(x)=n=0∑∞(n+1)2xn=C+n=0∑∞(n+1)xn+1=xC+n=0∑∞(n+1)xn=D+∫xCdx+n=0∑∞xn+1=D+∫xCdx+xn=0∑∞xn=D+∫xCdx+1−xx=xC+(1−x)2(1−x)(1)−x(−1)=xC+(1−x)21=C+(1−x)2x=(1−x)4(1−x)2(1)−x(2(1−x)(−1))=(1−x)4(1−x)2+2x(1−x)=(1−x)3(1−x)+2x
由于级数 f ( x ) = ∑ n = 0 ∞ ( n + 1 ) 2 x n f(x) = \sum_{n=0}^{\infty} (n + 1)^2 x^n f(x)=∑n=0∞(n+1)2xn的收敛域也是 ∣ x ∣ < 1 \mid x \mid < 1 ∣x∣<1,因此可令 x = 1 π x=\frac{1}{\pi} x=π1,于是有
f ( 1 π ) = ∑ n = 0 ∞ ( n + 1 ) 2 π n = ( 1 − 1 π ) + 2 π ( 1 − 1 π ) 3 \quad f \left ( \frac{1}{\pi} \right ) = \sum_{n=0}^{\infty} \frac{(n + 1)^2}{\pi^n} = \frac{\left (1 – \frac{1}{\pi} \right ) + \frac{2}{\pi}}{\left (1 – \frac{1}{\pi} \right )^3} f(π1)=n=0∑∞πn(n+1)2=(1−π1)3(1−π1)+π2
五、用幂级数求数列通项公式
幂级数还可以用来求数列的通项公式,基本的思路为:
这种方法又称母函数法,通常见于组合数学。
例7. 求Fibonacci数列的通项公式:
先设:
s ( x ) = ∑ k = 0 ∞ F k x k s(x)=\sum_{k=0}^{\infty} F_{k} x^{k} s(x)=k=0∑∞Fkxk
考虑Fibonacci的定义 F n = F n − 1 + F n − 2 F_n=F_{n-1}+F_{n-2} Fn=Fn−1+Fn−2,有
s ( x ) = ∑ k = 0 ∞ F k x k = F 0 + F 1 x + ∑ k = 2 ∞ ( F k − 1 + F k − 2 ) x k = x + ∑ k = 2 ∞ F k − 1 x k − ∑ k = 2 ∞ F k − 2 x k = x + x ∑ k = 0 ∞ F k x k + x 2 ∑ k = 0 ∞ F k x k = x + x s ( x ) + x 2 s ( x ) \begin{aligned} s(x) &=\sum_{k=0}^{\infty} F_{k} x^{k} \\ &=F_{0}+F_{1} x+\sum_{k=2}^{\infty}\left(F_{k-1}+F_{k-2}\right) x^{k} \\ &=x+\sum_{k=2}^{\infty} F_{k-1} x^{k}-\sum_{k=2}^{\infty} F_{k-2} x^{k} \\ &=x+x \sum_{k=0}^{\infty} F_{k} x^{k}+x^{2} \sum_{k=0}^{\infty} F_{k} x^{k} \\ &=x+x s(x)+x^{2} s(x) \end{aligned} s(x)=k=0∑∞Fkxk=F0+F1x+k=2∑∞(Fk−1+Fk−2)xk=x+k=2∑∞Fk−1xk−k=2∑∞Fk−2xk=x+xk=0∑∞Fkxk+x2k=0∑∞Fkxk=x+xs(x)+x2s(x)
解出 s ( x ) s(x) s(x)
s ( x ) = x 1 − x − x 2 = − x x 2 + x − 1 s(x)=\frac{x}{1-x-x^{2}}=\frac{-x}{x^{2}+x-1} s(x)=1−x−x2x=x2+x−1−x
又:
x 1 − x − x 2 = x ( 1 − φ x ) ( 1 − ψ x ) = 1 5 1 − φ x + − 1 5 1 − ψ x = 1 5 ( 1 1 − φ x − 1 1 − ψ x ) \frac{x}{1-x-x^{2}}=\frac{x}{(1-\varphi x)(1-\psi x)} =\frac{\frac{1}{\sqrt{5}}}{1-\varphi x}+\frac{-\frac{1}{\sqrt{5}}}{1-\psi x}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi x}-\frac{1}{1-\psi x}\right) 1−x−x2x=(1−φx)(1−ψx)x=1−φx51+1−ψx−51=51(1−φx1−1−ψx1)
注意到 φ , ψ \varphi,\psi φ,ψ很好求,它们是分母的根:
φ = 1 + 5 2 , ψ = 1 − 5 2 \varphi=\frac{1+\sqrt{5}}{2}, \quad \psi=\frac{1-\sqrt{5}}{2} φ=21+5,ψ=21−5
再代回上式得到:
s ( x ) = 1 5 ( 1 1 − φ x − 1 1 − ψ x ) = 1 5 ( ∑ n = 0 ∞ φ n x n − ∑ n = 0 ∞ ψ n x n ) = 1 5 ( ∑ n = 0 ∞ ( φ n − ψ n ) x n ) = ∑ k = 0 ∞ F k x k \begin{aligned} s(x) &=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\varphi x}-\frac{1}{1-\psi x}\right) \\ &=\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty} \varphi^{n} x^{n}-\sum_{n=0}^{\infty} \psi^{n} x^{n}\right) \\ &=\frac{1}{\sqrt{5}}\left(\sum_{n=0}^{\infty}\left(\varphi^{n}-\psi^{n}\right) x^{n}\right)=\sum_{k=0}^{\infty} F_{k} x^{k} \end{aligned} s(x)=51(1−φx1−1−ψx1)=51(n=0∑∞φnxn−n=0∑∞ψnxn)=51(n=0∑∞(φn−ψn)xn)=k=0∑∞Fkxk
因此:
F n = φ n − ψ n 5 = φ n − ( − φ ) − n 5 = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] F_{n}=\frac{\varphi^{n}-\psi^{n}}{\sqrt{5}}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right] Fn=5φn−ψn=5φn−(−φ)−n=51[(21+5)n−(21−5)n]
六、用幂级数解微分方程
例8. 考虑一个简单的方程:
y ′ ′ + y = 0 y” + y = 0 y′′+y=0
设它的解为一个幂级数:
y ( x ) = ∑ n = 0 ∞ a n x n y\left( x \right) = \sum\limits_{n = 0}^\infty {
{a_n}{x^n}} y(x)=n=0∑∞anxn
考虑:
y ′ ( x ) = ∑ n = 1 ∞ n a n x n − 1 y ′ ′ ( x ) = ∑ n = 2 ∞ n ( n − 1 ) a n x n − 2 y’\left( x \right) = \sum\limits_{n = 1}^\infty {n{a_n}{x^{n – 1}}} \hspace{0.25in}y”\left( x \right) = \sum\limits_{n = 2}^\infty {n\left( {n – 1} \right){a_n}{x^{n – 2}}} y′(x)=n=1∑∞nanxn−1y′′(x)=n=2∑∞n(n−1)anxn−2
带回原方程得到:
∑ n = 2 ∞ n ( n − 1 ) a n x n − 2 + ∑ n = 0 ∞ a n x n = 0 \sum\limits_{n = 2}^\infty {n\left( {n – 1} \right){a_n}{x^{n – 2}}} + \sum\limits_{n = 0}^\infty {
{a_n}{x^n}} = 0 n=2∑∞n(n−1)anxn−2+n=0∑∞anxn=0
对第一项的系数进行一下调整:
∑ n = 0 ∞ ( n + 2 ) ( n + 1 ) a n + 2 x n + ∑ n = 0 ∞ a n x n = 0 \sum\limits_{n = 0}^\infty {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}}{x^n}} + \sum\limits_{n = 0}^\infty {
{a_n}{x^n}} = 0 n=0∑∞(n+2)(n+1)an+2xn+n=0∑∞anxn=0
实际上就是将 ∑ n = 2 ∞ n ( n − 1 ) a n x n − 2 \sum\limits_{n = 2}^\infty {n\left( {n – 1} \right){a_n}{x^{n – 2}}} n=2∑∞n(n−1)anxn−2 中的 n n n 换成 n − 2 n-2 n−2.
整理得到:
∑ n = 0 ∞ [ ( n + 2 ) ( n + 1 ) a n + 2 + a n ] x n = 0 \sum\limits_{n = 0}^\infty {\left[ {\left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} + {a_n}} \right]{x^n}} = 0 n=0∑∞[(n+2)(n+1)an+2+an]xn=0
接下来就有意思了,由于上面的幂级数必须为零,它又是无穷级数,因此每项系数必为0:
( n + 2 ) ( n + 1 ) a n + 2 + a n = 0 , n = 0 , 1 , 2 , … \left( {n + 2} \right)\left( {n + 1} \right){a_{n + 2}} + {a_n} = 0,\hspace{0.25in}n = 0,1,2, \ldots (n+2)(n+1)an+2+an=0,n=0,1,2,…
由上式可以总结出以下规律:
a 2 k = ( − 1 ) k a 0 ( 2 k ) ! , k = 1 , 2 , … a 2 k + 1 = ( − 1 ) k a 1 ( 2 k + 1 ) ! , k = 1 , 2 , … a_{2 k}=\frac{(-1)^{k} a_{0}}{(2 k) !}, \quad k=1,2, \ldots \quad a_{2 k+1}=\frac{(-1)^{k} a_{1}}{(2 k+1) !}, \quad k=1,2, \ldots a2k=(2k)!(−1)ka0,k=1,2,…a2k+1=(2k+1)!(−1)ka1,k=1,2,…
接下来的事情虽然看似麻烦,但仍然清楚:
y ( x ) = ∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯ + a 2 k x 2 k + a 2 k + 1 x 2 k + 1 + ⋯ = a 0 + a 1 x − a 0 2 ! x 2 − a 1 3 ! x 3 + ⋯ + ( − 1 ) k a 0 ( 2 k ) ! x 2 k + ( − 1 ) k a 1 ( 2 k + 1 ) ! x 2 k + 1 + ⋯ \begin{aligned}y\left( x \right) & = \sum\limits_{n = 0}^\infty {
{a_n}{x^n}} \\ & = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + \cdots + {a_{2k}}{x^{2k}} + {a_{2k + 1}}{x^{2k + 1}} + \cdots \\ & = {a_0} + {a_1}x – \frac{
{
{a_0}}}{
{2!}}{x^2} – \frac{
{
{a_1}}}{
{3!}}{x^3} + \cdots + \frac{
{
{
{\left( { – 1} \right)}^k}{a_0}}}{
{\left( {2k} \right)!}}{x^{2k}} + \frac{
{
{
{\left( { – 1} \right)}^k}{a_1}}}{
{\left( {2k + 1} \right)!}}{x^{2k + 1}} + \cdots \end{aligned} y(x)=n=0∑∞anxn=a0+a1x+a2x2+a3x3+⋯+a2kx2k+a2k+1x2k+1+⋯=a0+a1x−2!a0x2−3!a1x3+⋯+(2k)!(−1)ka0x2k+(2k+1)!(−1)ka1x2k+1+⋯
再重新整理:
y ( x ) = a 0 { 1 − x 2 2 ! ⋯ + ( − 1 ) k x 2 k ( 2 k ) ! + ⋯ } + a 1 { x − x 3 3 ! + ⋯ + ( − 1 ) k ( 2 k + 1 ) ! x 2 k + 1 + ⋯ } = a 0 ∑ k = 0 ∞ ( − 1 ) k x 2 k ( 2 k ) ! + a 1 ∑ k = 0 ∞ ( − 1 ) k x 2 k + 1 ( 2 k + 1 ) ! \begin{aligned}y\left( x \right) & = {a_0}\left\{ {1 – \frac{
{
{x^2}}}{
{2!}} \cdots + \frac{
{
{
{\left( { – 1} \right)}^k}{x^{2k}}}}{
{\left( {2k} \right)!}} + \cdots } \right\} + {a_1}\left\{ {x – \frac{
{
{x^3}}}{
{3!}} + \cdots + \frac{
{
{
{\left( { – 1} \right)}^k}}}{
{\left( {2k + 1} \right)!}}{x^{2k + 1}} + \cdots } \right\}\\ & = {a_0}\sum\limits_{k = 0}^\infty {\frac{
{
{
{\left( { – 1} \right)}^k}{x^{2k}}}}{
{\left( {2k} \right)!}}} + {a_1}\sum\limits_{k = 0}^\infty {\frac{
{
{
{\left( { – 1} \right)}^k}{x^{2k + 1}}}}{
{\left( {2k + 1} \right)!}}} \end{aligned} y(x)=a0{
1−2!x2⋯+(2k)!(−1)kx2k+⋯}+a1{
x−3!x3+⋯+(2k+1)!(−1)kx2k+1+⋯}=a0k=0∑∞(2k)!(−1)kx2k+a1k=0∑∞(2k+1)!(−1)kx2k+1
注意到:
cos ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! sin ( x ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \cos \left( x \right) = \sum\limits_{n = 0}^\infty {\frac{
{
{
{\left( { – 1} \right)}^n}{x^{2n}}}}{
{\left( {2n} \right)!}}} \hspace{0.25in}\sin \left( x \right) = \sum\limits_{n = 0}^\infty {\frac{
{
{
{\left( { – 1} \right)}^n}{x^{2n + 1}}}}{
{\left( {2n + 1} \right)!}}} cos(x)=n=0∑∞(2n)!(−1)nx2nsin(x)=n=0∑∞(2n+1)!(−1)nx2n+1
因此:
y ( x ) = c 1 cos ( x ) + c 2 sin ( x ) y\left( x \right) = {c_1}\cos \left( x \right) + {c_2}\sin \left( x \right) y(x)=c1cos(x)+c2sin(x)
这个例子只是一个比较简单的问题。当然完全可以直接用简单的方法求解。但这种方法在求解其它更为复杂的非线性方程的时候十分有用,因为对于许多方程它并不一定有初等表达式。但如果其幂级数解存在的话,那么就可以对它进行近似计算。这种数值计算方法通常又比普通的差分法要精确得多,目前也是计算数学界较为主流的一种方法。
参考资料:
http://people.math.sc.edu/girardi/m142/handouts/10sTaylorPolySeries.pdf
https://math.berkeley.edu/~neu/undergrad_chap1.pdf
https://www.math.cuhk.edu.hk/course_builder/1516/math1010c/Power_series.pdf
https://web.ma.utexas.edu/users/m408s/CurrentWeb/LM14-3-10.php
[http://math.caltech.edu/syye/teaching/courses/Ma8_2015/Lecture%20Notes/ma8_wk10.pdf](http://math.caltech.edu/syye/teaching/courses/Ma8_2015/Lecture Notes/ma8_wk10.pdf)
https://tutorial.math.lamar.edu/classes/de/seriessolutions.aspx
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/142277.html