大家好,欢迎来到IT知识分享网。
原
期望、方差、协方差和协方差矩阵
1.离散随机变量的X的数学期望:
E ( X ) = ∑ ∞ k = 1 x k p k E ( X ) = ∑ k = 1 ∞ x k p k E ( X ) = ∑ k = 1 ∞ x k p k E(X)=∑∞k=1xkpkE(X)=∑k=1∞xkpk E(X) = \sum_{k=1}^{\infty}x_kp_k E(X)=∑∞k=1xkpkE(X)=∑k=1∞xkpkE(X)=k=1∑∞xkpkρXY=0, 两个变量不相关
四、协方差矩阵
推广到多维:
对于连续的情况:
例子:
可以参考下面的博客:
详解协方差与协方差矩阵:期望、方差、协方差、协方差矩阵
参考: 概率论与数理统计 浙大
</div> <link href="https://csdnimg.cn/release/phoenix/mdeditor/markdown_views-7b4cdcb592.css" rel="stylesheet"> </div> </article>
<div id="dmp_ad_58"><div id="kp_box_58" data-pid="58" data-track-view="{"mod":"kp_popu_58-402","con":",,"}" data-track-click="{"mod":"kp_popu_58-402","con":",,"}"><div style="width:100%;background:#fff;border:3px solid #fff;">
苏州桥房产抵押额度高达千万,先息后本 厚泽金融 · 顶新
协方差矩阵计算方法
11-09 阅读数 1
1.协方差定义X、Y是两个随机变量,X、Y的协方差cov(X,Y)定义为:其中: 、2.协方差矩阵定义矩阵中的数据按行排列与按列排列求出的协方差矩阵是不同的,这里默认数据是按行排列。即每一行是一个ob… 博文 来自: Mr_HHH的博客
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/shenziheng1/article/details/,BlogCommendFromBaidu_1,index_1"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/shenziheng1/article/details/,BlogCommendFromBaidu_1,index_1"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/shenziheng1/article/details/" target="_blank" title="我所理解的协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 我所理解的<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">10-28</span> <span class="read-num hover-hide"> 阅读数 2</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/shenziheng1/article/details/" target="_blank" title="我所理解的协方差矩阵"> <span class="desc oneline">1.前言看论文的时候又看到了协方差矩阵这个破东西,以前看图像处理的书籍的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来。2.拼出身—统计学的定义学过概率统计...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/shenziheng1">来自: <span class="blog_title"> 沈春旭的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net//article/details/,BlogCommendFromBaidu_2,index_2"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net//article/details/,BlogCommendFromBaidu_2,index_2"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net//article/details/" target="_blank" title="关于协方差矩阵的理解"> <h4 class="text-truncate oneline" style="width: 802px;"> 关于<em>协方差</em>矩阵的理解 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">01-10</span> <span class="read-num hover-hide"> 阅读数 1334</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net//article/details/" target="_blank" title="关于协方差矩阵的理解"> <span class="desc oneline">协方差为什么能表示两个随机变量的相关性?原文地址:http://blog.csdn.net/huntinggo/article/details/作者:Hg时间:2015.81.引言作为...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/">来自: <span class="blog_title"> 佳山的枫叶的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-ad-box"><div id="kp_box_59" data-pid="59" data-track-view="{"mod":"kp_popu_59-517","con":",,"}" data-track-click="{"mod":"kp_popu_59-517","con":",,"}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__50_473" id="QIHOO__WEB__SO__50_473" style="display:block;margin:0;padding:0;border:none;width:852px;height:52px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__50_473-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__50_473 singleImage clk" data-href="https://ssxd.mediav.com/s?type=2&r=20&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441d1d5ac7c&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FaixkwIlAhUEFo7KqITCs/CA1wEV8gglodfnhgQlABUaFAAA&ubi=FdqBRBW6/8UCFYy8pRcViMi8WBUEFRwWwrKj3RYWjsq968v59IDXATQCFqjCECUCFaXKgLkJFdIEFQA2w/q/ncGosZIbAA&clickid=0&cpx=__OFFSET_X__&cpy=__OFFSET_Y__&cs=__EVENT_TIME_START__&ce=__EVENT_TIME_END__&csign2=WD6czKZ6GQZ=&url=http%3A%2F%2Fjy.weiyihezi.cn%2Fedu-pc%2Fself-study2%2F%3Fcrm-2" data-pv="https://ssxd.mediav.com/s?type=1&r=20&tid=ZGRkNzY4YWU5Njk3NjhkNmYyODU4ZTQ0MzNiNjU1NTA&finfo=DAABCAABAAAAlggAAgAAAE4EAAM/8AAAAAAAAAAIAAIAAAABCgADa4Dp5kYErXEIAAQAAACWBgAGLbcKAAkAAAAAAAIQlAYACgAACgAPAAAAAAAW42AA&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441d1d5ac7c&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FaixkwIlAhUEFo7KqITCs/CA1wEV8gglodfnhgQlABUaFAAA&ubi=FdqBRBW6/8UCFYy8pRcViMi8WBUEFRwWwrKj3RYWjsq968v59IDXATQCFqjCECUCFaXKgLkJFdIEFQA2w/q/ncGosZIbAA&ds=1&price=AAAAAFx4locAAAAAAAwdjSFWv6S4TOQ6OciQaQ==,https://max-l.mediav.com/rtb?type=2&d=100&b=1330a441d1d5ac7c&p=&l=&s=1&z=1&ps=0&w=AAAAAFx4locAAAAAAAwdvGfHP12Q4x0oyJvYRw&pt=1&k=i2pfAgAAAAA=&i=OCU0fIa1ZJ3L&v=6" data-clk="https://max-l.mediav.com/rtb?type=3&d=100&b=1330a441d1d5ac7c&p=&l=&s=1&ps=0&k=i2pfAgAAAAA=&i=OCU0fIa1ZJ3L&v=6&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&tc=&turl="> <info-div class="wrap"> <info-div class="singleImage-img singleImage-img-left"> <info-div class="img" style="background-image:url(https://s3m.mediav.com/galileo/-ff1d602f5394e3a6c65df3bfd3.jpg)"><info-div class="ads-tag"></info-div></info-div> </info-div> <info-div class="singleImage-body singleImage-body-left"> <info-div class="singleImage-title">北京本科名校面向上班族招生,学期1年,毕业就是本科!</info-div> <info-div class="singleImage-desc">威都 · 顶新</info-div> </info-div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/a/article/details/,BlogCommendFromBaidu_3,index_3"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/a/article/details/,BlogCommendFromBaidu_3,index_3"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/a/article/details/" target="_blank" title="PCA算法原理:为什么用协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> PCA算法原理:为什么用<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">05-12</span> <span class="read-num hover-hide"> 阅读数 3143</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/a/article/details/" target="_blank" title="PCA算法原理:为什么用协方差矩阵"> <span class="desc oneline">PCA的理论知识以及与K-L变换的关系PCA是主成分分析(PrincipalComponentsAnalysis)的简称。这是一种数据降维技术,用于数据预处理。一般我们获取的原始数据维度都很高,那么我...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/a">来自: <span class="blog_title"> LJRice的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/sinat_/article/details/,BlogCommendFromBaidu_4,index_4"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/sinat_/article/details/,BlogCommendFromBaidu_4,index_4"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/sinat_/article/details/" target="_blank" title="协方差矩阵的意义"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>协方差</em>矩阵的意义 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">03-26</span> <span class="read-num hover-hide"> 阅读数 2853</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/sinat_/article/details/" target="_blank" title="协方差矩阵的意义"> <span class="desc oneline">协方差矩阵的意义:方差是变量减均值的期望,两个变量的协方差是变量一减均值,乘以,变量二减均值,的期望。协方差矩阵,就是多个变量两两间协方差值,按顺序排成的矩阵。协方差的意义是,衡量两个变量偏差变化趋势...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/sinat_">来自: <span class="blog_title"> 二姐的西瓜君</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/ybdesire/article/details/,BlogCommendFromBaidu_5,index_5"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/ybdesire/article/details/,BlogCommendFromBaidu_5,index_5"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/ybdesire/article/details/" target="_blank" title="详解协方差与协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 详解<em>协方差</em>与<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">03-23</span> <span class="read-num hover-hide"> 阅读数 16</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/ybdesire/article/details/" target="_blank" title="详解协方差与协方差矩阵"> <span class="desc oneline">协方差矩阵的理解与计算过程,包括具体细节与两个实例</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/ybdesire">来自: <span class="blog_title"> ybdesire的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/dfdfdsfdfdfdf/article/details/,BlogCommendFromBaidu_6,index_6"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/dfdfdsfdfdfdf/article/details/,BlogCommendFromBaidu_6,index_6"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/dfdfdsfdfdfdf/article/details/" target="_blank" title="协方差矩阵的几何解释"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>协方差</em>矩阵的几何解释 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">11-14</span> <span class="read-num hover-hide"> 阅读数 1939</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/dfdfdsfdfdfdf/article/details/" target="_blank" title="协方差矩阵的几何解释"> <span class="desc oneline">Ageometricinterpretationofthecovariancematrixhttp://www.visiondummy.com/2014/04/geometric-interpreta...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/dfdfdsfdfdfdf">来自: <span class="blog_title"> Bryan_Zhang的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/_/article/details/,BlogCommendFromBaidu_7,index_7"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/_/article/details/,BlogCommendFromBaidu_7,index_7"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/_/article/details/" target="_blank" title="协方差,协方差矩阵,相关系数"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>协方差</em>,<em>协方差</em>矩阵,相关系数 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">05-26</span> <span class="read-num hover-hide"> 阅读数 1275</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/_/article/details/" target="_blank" title="协方差,协方差矩阵,相关系数"> <span class="desc oneline">1.协方差定义: X,Y为两个随机变量,则它们的协方差值为: 这个公式的推导很简单,在特定的样本数据下,E(X),E(Y)都是常值,又由方差的性质E(A+B)=E(A)+E(B)可以展开为:C...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/_">来自: <span class="blog_title"> outsider</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-ad-box"><div id="kp_box_60" data-pid="60" data-track-view="{"mod":"kp_popu_60-43","con":",,"}" data-track-click="{"mod":"kp_popu_60-43","con":",,"}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__41_658" id="QIHOO__WEB__SO__41_658" style="display:block;margin:0;padding:0;border:none;width:900px;height:84px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__41_658-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__41_658 singleImage clk" data-href="https://ssxd.mediav.com/s?type=2&r=20&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441dc&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FeTGlAIlAhUEFo7KjYD2q6Di9wEV8ggll7bisg0lABUaFAAA&ubi=FdqBRBW6/8UCFYy8pRcViMi8WBUEFRwWwrKj3RYWjsqi5//xpOL3ATQCFqjCECUCFcrzqcEKFdIEFQA2w/q/ncGosZIbAA&clickid=0&cpx=__OFFSET_X__&cpy=__OFFSET_Y__&cs=__EVENT_TIME_START__&ce=__EVENT_TIME_END__&csign2=WD6czKZ6GQZ=&url=http%3A%2F%2Fjy.weiyihezi.cn%2Fedu-pc%2Fself-study2%2F%3Fcrm-2" data-pv="https://ssxd.mediav.com/s?type=1&r=20&tid=ZGRkNzY4YWU5Njk3NjhkNmYyODU4ZTQ0MzNiNjU1NTA&finfo=DAABCAABAAAAlggAAgAAAHQEAAM/8AAAAAAAAAAIAAIAAAABCgADe+JJx+bHTXEIAAQAAACWBgAGLbcKAAkAAAAAAAIQlAYACgAACgAPAAAAAAAW42AA&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441dc&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FeTGlAIlAhUEFo7KjYD2q6Di9wEV8ggll7bisg0lABUaFAAA&ubi=FdqBRBW6/8UCFYy8pRcViMi8WBUEFRwWwrKj3RYWjsqi5//xpOL3ATQCFqjCECUCFcrzqcEKFdIEFQA2w/q/ncGosZIbAA&ds=1&price=AAAAAFx4locAAAAAAA4UFBt11tcGuL7BBFuHGg==,https://max-l.mediav.com/rtb?type=2&d=100&b=1330a441dc&p=&l=&s=1&z=1&ps=0&w=AAAAAFx4locAAAAAAA4UNMxIMg0zqjla-_nXVQ&pt=1&k=EUMWjAAAAAA=&i=BcGid1a1ZJZZ&v=6" data-clk="https://max-l.mediav.com/rtb?type=3&d=100&b=1330a441dc&p=&l=&s=1&ps=0&k=EUMWjAAAAAA=&i=BcGid1a1ZJZZ&v=6&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&tc=&turl="> <info-div class="wrap"> <info-div class="singleImage-img singleImage-img-left"> <info-div class="img" style="background-image:url(https://s3m.mediav.com/galileo/-ff1d602f5394e3a6c65df3bfd3.jpg)"><info-div class="ads-tag"></info-div></info-div> </info-div> <info-div class="singleImage-body singleImage-body-left"> <info-div class="singleImage-title">北京本科名校面向上班族招生,学期1年,毕业就是本科!</info-div> <info-div class="singleImage-desc">威都 · 顶新</info-div> </info-div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/_/article/details/,BlogCommendFromBaidu_8,index_8"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/_/article/details/,BlogCommendFromBaidu_8,index_8"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/_/article/details/" target="_blank" title="均值,方差和协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 均值,<em>方差</em>和<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">09-16</span> <span class="read-num hover-hide"> 阅读数 445</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/_/article/details/" target="_blank" title="均值,方差和协方差矩阵"> <span class="desc oneline">一、概率论中对数据的基本描述1.均值:2.标准差:3.方差:注解:1.均值是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是映数据集中趋势的一项指标。平均数(均值)和...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/_">来自: <span class="blog_title"> 史明礼的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/_/article/details/,BlogCommendFromBaidu_9,index_9"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/_/article/details/,BlogCommendFromBaidu_9,index_9"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/_/article/details/" target="_blank" title="PCA与协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> PCA与<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">06-04</span> <span class="read-num hover-hide"> 阅读数 766</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/_/article/details/" target="_blank" title="PCA与协方差矩阵"> <span class="desc oneline">一、协方差矩阵一个维度上方差的定义:协方差的定义:(a)协方差就是计算了两个维度之间的相关性,即这个样本的这两个维度之间有没有关系。协方差为0,证明这两个维度之间没有关系,协方差为正,两个正相关,为负...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/_">来自: <span class="blog_title"> fourierr的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box blog-expert-recommend-box" style="display: block;"> <div class="d-flex"> <div class="blog-expert-recommend"> <div class="blog-expert"> <div class="blog-expert-flexbox" data-track-view="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/pipisorry" target="_blank"><img src="https://avatar.csdn.net/5/5/8/3_pipisorry.jpg" alt="-柚子皮-" title="-柚子皮-"><svg class="icon" aria-hidden="true"><use xlink:href="#csdnc-blogexpert"></use></svg></a><span data-track-click="{"mod":"popu_710","con":"https://blog.csdn.net/_/article/details/"}"><span class="blog-expert-button-follow btn-red-follow" data-name="pipisorry" data-nick="-柚子皮-">关注</span></span></div><div class="info"><span data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/pipisorry" target="_blank"><h5 class="oneline" title="-柚子皮-">-柚子皮-</h5></a></span> <p></p><p class="article-num" title="607篇文章"> 607篇文章</p><p class="article-num" title="排名:168"> 排名:168</p><p></p></div></div></div><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/fengbingchun" target="_blank"><img src="https://avatar.csdn.net/6/6/F/3_fengbingchun.jpg" alt="fengbingchun" title="fengbingchun"><svg class="icon" aria-hidden="true"><use xlink:href="#csdnc-blogexpert"></use></svg></a><span data-track-click="{"mod":"popu_710","con":"https://blog.csdn.net/_/article/details/"}"><span class="blog-expert-button-follow btn-red-follow" data-name="fengbingchun" data-nick="fengbingchun">关注</span></span></div><div class="info"><span data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/fengbingchun" target="_blank"><h5 class="oneline" title="fengbingchun">fengbingchun</h5></a></span> <p></p><p class="article-num" title="758篇文章"> 758篇文章</p><p class="article-num" title="排名:99"> 排名:99</p><p></p></div></div></div><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/utimes" target="_blank"><img src="https://avatar.csdn.net/E/D/3/3_utimes.jpg" alt="松子茶" title="松子茶"><svg class="icon" aria-hidden="true"><use xlink:href="#csdnc-blogexpert"></use></svg></a><span data-track-click="{"mod":"popu_710","con":"https://blog.csdn.net/_/article/details/"}"><span class="blog-expert-button-follow btn-red-follow" data-name="utimes" data-nick="松子茶">关注</span></span></div><div class="info"><span data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/utimes" target="_blank"><h5 class="oneline" title="松子茶">松子茶</h5></a></span> <p></p><p class="article-num" title="449篇文章"> 449篇文章</p><p class="article-num" title="排名:710"> 排名:710</p><p></p></div></div></div><div class="blog-expert-item"><div class="blog-expert-info-box"><div class="blog-expert-img-box" data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/duankaifei" target="_blank"><img src="https://avatar.csdn.net/0/D/5/3_duankaifei.jpg" alt="1oscar" title="1oscar"></a><span data-track-click="{"mod":"popu_710","con":"https://blog.csdn.net/_/article/details/"}"><span class="blog-expert-button-follow btn-red-follow" data-name="duankaifei" data-nick="1oscar">关注</span></span></div><div class="info"><span data-track-click="{"mod":"popu_709","con":"https://blog.csdn.net/_/article/details/"}"><a href="https://blog.csdn.net/duankaifei" target="_blank"><h5 class="oneline" title="1oscar">1oscar</h5></a></span> <p></p><p class="article-num" title="50篇文章"> 50篇文章</p><p class="article-num" title="排名:千里之外"> 排名:千里之外</p><p></p></div></div></div></div> </div> </div> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/timcompp/article/details/,BlogCommendESEnWordWeight_10,index_10"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/timcompp/article/details/,BlogCommendESEnWordWeight_10,index_10"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/timcompp/article/details/" target="_blank" title="机器学习常见面试问题(一)"> <h4 class="text-truncate oneline" style="width: 802px;"> 机器学习常见面试问题(一) </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">03-15</span> <span class="read-num hover-hide"> 阅读数 9824</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/timcompp/article/details/" target="_blank" title="机器学习常见面试问题(一)"> <span class="desc oneline">AllaboutML.</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/timcompp">来自: <span class="blog_title"> timcompp的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/lsgqjh/article/details/,BlogCommendESEnWordWeight_11,index_11"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/lsgqjh/article/details/,BlogCommendESEnWordWeight_11,index_11"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/lsgqjh/article/details/" target="_blank" title="如何通俗易懂地解释「协方差」与「相关系数」"> <h4 class="text-truncate oneline" style="width: 802px;"> 如何通俗易懂地解释「<em>协方差</em>」与「相关系数」 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">01-21</span> <span class="read-num hover-hide"> 阅读数 5404</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/lsgqjh/article/details/" target="_blank" title="如何通俗易懂地解释「协方差」与「相关系数」"> <span class="desc oneline">2,561人赞同了该回答最喜欢通俗易懂地解释一个事情。一、协方差:可以通俗的理解为:两个变量在变化过程中是同方向变化?还是反方向变化?同向或反向程度如何?你变大,同时我也变大,说明两个变量是同向变化的...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/lsgqjh">来自: <span class="blog_title"> 舒哥的blog</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/yuzhongchun/article/details/,BlogCommendESEnWordWeight_12,index_12"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/yuzhongchun/article/details/,BlogCommendESEnWordWeight_12,index_12"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/yuzhongchun/article/details/" target="_blank" title="机器学习之数学基础——期望、方差、协方差、相关系数、矩、协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 机器学习之数学基础——<em>期望</em>、<em>方差</em>、<em>协方差</em>、相关系数、矩、<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">09-16</span> <span class="read-num hover-hide"> 阅读数 2653</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/yuzhongchun/article/details/" target="_blank" title="机器学习之数学基础——期望、方差、协方差、相关系数、矩、协方差矩阵"> <span class="desc oneline">数学期望定义性质方差定义切比雪夫不等式协方差定义性质协方差的上界方差和协方差的关系相关系数矩协方差矩阵数学期望定义离散型E(X)=\sum_{i}^{\infty}{x_k}{p_k}连续型E(X)=...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/yuzhongchun">来自: <span class="blog_title"> 不涸</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-ad-box"><div id="kp_box_61" data-pid="61" data-track-view="{"mod":"kp_popu_61-557","con":",,"}" data-track-click="{"mod":"kp_popu_61-557","con":",,"}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__02_812" id="QIHOO__WEB__SO__02_812" style="display:block;margin:0;padding:0;border:none;width:852px;height:60px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__02_812-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__02_812 singleImage clk" data-href="https://ssxd.mediav.com/s?type=2&r=20&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441d1d5ac7c&price=AAAAAFx4locAAAAAAAweIPTVyZoW3dmRY++B0g==&finfo=DAABCAABAAAAeggAAgAAAGwEAAM/QjO9Uj3LDgAIAAIAAAADCgADa4Dy/iiQBSIIAAQAAADcBgAGKEsKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAAEqckAA&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FaixkwIlAhUEFo7KqITCs/CA1wEV8gglodfnhgQlABUaFAAA&ubi=FdiNGRXI9KwCFeygqBYVnoe3WBUGFRwWxNvnpAQWjsrS0tW/+YDXARbu+NaeCRYAFAQWqMIQJQYV/5iWtwwV8gQVADbqk6m24cCwupABAA&clickid=0&cpx=__OFFSET_X__&cpy=__OFFSET_Y__&cs=__EVENT_TIME_START__&ce=__EVENT_TIME_END__&csign2=EWUMyG6RJk2=&url=http%3A%2F%2Fwww.ihouze.com%2Fhzdk%2F%3Ff%3Dtsg9%26id%3Dso001" data-pv="https://ssxd.mediav.com/s?type=1&r=20&tid=ZGRkNzY4YWU5Njk3NjhkNmYyODU4ZTQ0MzNiNjU1NTA&finfo=DAABCAABAAAAeggAAgAAAGwEAAM/QjO9Uj3LDgAIAAIAAAADCgADa4Dy/iiQBSIIAAQAAADcBgAGKEsKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAAEqckAA&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441d1d5ac7c&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FaixkwIlAhUEFo7KqITCs/CA1wEV8gglodfnhgQlABUaFAAA&ubi=FdiNGRXI9KwCFeygqBYVnoe3WBUGFRwWxNvnpAQWjsrS0tW/+YDXARbu+NaeCRYAFAQWqMIQJQYV/5iWtwwV8gQVADbqk6m24cCwupABAA&ds=2&price=AAAAAFx4locAAAAAAAweIPTVyZoW3dmRY++B0g==,https://max-l.mediav.com/rtb?type=2&d=100&b=1330a441d1d5ac7c&p=&l=&s=2&z=1&ps=0&w=AAAAAFx4locAAAAAAAweYEnpeitCxNXadnndxg&pt=1&k=i2pfAgAAAAA=&i=OCG0fIa1ZJZw&v=6" data-clk="https://max-l.mediav.com/rtb?type=3&d=100&b=1330a441d1d5ac7c&p=&l=&s=2&ps=0&k=i2pfAgAAAAA=&i=OCG0fIa1ZJZw&v=6&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&tc=&turl="> <info-div class="wrap"> <info-div class="singleImage-img singleImage-img-left"> <info-div class="img" style="background-image:url(https://s3m.mediav.com/galileo/-10632d705ad61fb359addf804.jpg)"><info-div class="ads-tag"></info-div></info-div> </info-div> <info-div class="singleImage-body singleImage-body-left"> <info-div class="singleImage-title">苏州桥房产抵押额度高达千万,先息后本</info-div> <info-div class="singleImage-desc">厚泽金融 · 顶新</info-div> </info-div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/wenxuegeng/article/details/,BlogCommendESEnWordWeight_13,index_13"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/wenxuegeng/article/details/,BlogCommendESEnWordWeight_13,index_13"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/wenxuegeng/article/details/" target="_blank" title="统计-均值,期望,方差,协方差,协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 统计-均值,<em>期望</em>,<em>方差</em>,<em>协方差</em>,<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">05-23</span> <span class="read-num hover-hide"> 阅读数 3761</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/wenxuegeng/article/details/" target="_blank" title="统计-均值,期望,方差,协方差,协方差矩阵"> <span class="desc oneline">统计,均值,期望,方差,协方差,协方差矩阵</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/wenxuegeng">来自: <span class="blog_title"> wenxuegeng的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/weixin_/article/details/,BlogCommendESEnWordWeight_14,index_14"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/weixin_/article/details/,BlogCommendESEnWordWeight_14,index_14"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/weixin_/article/details/" target="_blank" title="概率统计:数学期望、方差、协方差、相关系数、矩"> <h4 class="text-truncate oneline" style="width: 802px;"> 概率统计:数学<em>期望</em>、<em>方差</em>、<em>协方差</em>、相关系数、矩 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">06-02</span> <span class="read-num hover-hide"> 阅读数 886</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/weixin_/article/details/" target="_blank" title="概率统计:数学期望、方差、协方差、相关系数、矩"> <span class="desc oneline">摘要:最近在学习机器学习/数据挖掘的算法,在看一些paper的时候经常会遇到以前学过的数学公式或者名词,又是总是想不起来,所以在此记录下自己的数学复习过程,方便后面查阅。1:数学期望数学期望是随机变量...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/weixin_">来自: <span class="blog_title"> weixin_的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/gslzszj/article/details/,BlogCommendFromBaidu_15,index_15"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/gslzszj/article/details/,BlogCommendFromBaidu_15,index_15"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/gslzszj/article/details/" target="_blank" title="对向量和矩阵求导、求迹、求期望的公式"> <h4 class="text-truncate oneline" style="width: 802px;"> 对向量和矩阵求导、求迹、求<em>期望</em>的公式 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">03-20</span> <span class="read-num hover-hide"> 阅读数 6500</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/gslzszj/article/details/" target="_blank" title="对向量和矩阵求导、求迹、求期望的公式"> <span class="desc oneline">在机器学习和统计学等领域,我们经常需要对矩阵和向量进行运算,比较常见的有求导、求迹、求期望等运算。下面的链接网页非常详细地给出了简明的计算公式,供大家查询!TheOperations ofVector...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/gslzszj">来自: <span class="blog_title"> gslzszj的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/weixin_/article/details/,BlogCommendFromBaidu_16,index_16"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/weixin_/article/details/,BlogCommendFromBaidu_16,index_16"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/weixin_/article/details/" target="_blank" title="协方差、矩阵、方差、期望、均值"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>协方差</em>、矩阵、<em>方差</em>、<em>期望</em>、均值 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">06-15</span> <span class="read-num hover-hide"> 阅读数 697</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/weixin_/article/details/" target="_blank" title="协方差、矩阵、方差、期望、均值"> <span class="desc oneline"></span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/weixin_">来自: <span class="blog_title"> Hayden的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/Daniel_djf/article/details/,BlogCommendFromBaidu_17,index_17"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/Daniel_djf/article/details/,BlogCommendFromBaidu_17,index_17"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/Daniel_djf/article/details/" target="_blank" title="期望 方差 协方差 协方差矩阵 (Expectation Variance Covariance)"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>期望</em> <em>方差</em> <em>协方差</em> <em>协方差</em>矩阵 (Expectation Variance Covariance) </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">12-24</span> <span class="read-num hover-hide"> 阅读数 5255</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/Daniel_djf/article/details/" target="_blank" title="期望 方差 协方差 协方差矩阵 (Expectation Variance Covariance)"> <span class="desc oneline">在学习机器学习的算法时经常会碰到随机变量的数字特征,所以在这里做一个简单的总结。1、 期望(Expectation)离散:其中,f(x)为随机变量x的概率函数,事实上期望就是随机变量的...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/Daniel_djf">来自: <span class="blog_title"> Daniel_djf的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-ad-box"><div id="kp_box_62" data-pid="62" data-track-view="{"mod":"kp_popu_62-556","con":",,"}" data-track-click="{"mod":"kp_popu_62-556","con":",,"}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__42_639" id="QIHOO__WEB__SO__42_639" style="display:block;margin:0;padding:0;border:none;width:852px;height:60px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__42_639-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__42_639 singleImage clk" data-href="https://ssxd.mediav.com/s?type=2&r=20&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441dc&price=AAAAAFx4locAAAAAAA4Uh7D7xZQ8l/PaRJz8vA==&finfo=DAABCAABAAAAcwgAAgAAAF0EAAM/U1dztZFh8wAIAAIAAAADCgADe+JS4Gn49VoIAAQAAABhBgAGLbcKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAAEYwwAA&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FeTGlAIlAhUEFo7KjYD2q6Di9wEV8ggll7bisg0lABUaFAAA&ubi=FdzRUBXKq8gCFeD3sBcVtqDYWBUEFRwWiOvfnRcWjsq3zom4qeL3ATQEFqjCECUGFbblxO4BFb4DFQA2sN24neeg9tjEAQA&clickid=0&cpx=__OFFSET_X__&cpy=__OFFSET_Y__&cs=__EVENT_TIME_START__&ce=__EVENT_TIME_END__&csign2=-HCq2EuSXD1=&url=http%3A%2F%2Fgp.arjosx18705.cn%2F" data-pv="https://ssxd.mediav.com/s?type=1&r=20&tid=ZGRkNzY4YWU5Njk3NjhkNmYyODU4ZTQ0MzNiNjU1NTA&finfo=DAABCAABAAAAcwgAAgAAAF0EAAM/U1dztZFh8wAIAAIAAAADCgADe+JS4Gn49VoIAAQAAABhBgAGLbcKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAAEYwwAA&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441dc&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FeTGlAIlAhUEFo7KjYD2q6Di9wEV8ggll7bisg0lABUaFAAA&ubi=FdzRUBXKq8gCFeD3sBcVtqDYWBUEFRwWiOvfnRcWjsq3zom4qeL3ATQEFqjCECUGFbblxO4BFb4DFQA2sN24neeg9tjEAQA&ds=2&price=AAAAAFx4locAAAAAAA4Uh7D7xZQ8l/PaRJz8vA==,https://max-l.mediav.com/rtb?type=2&d=100&b=1330a441dc&p=&l=&s=2&z=1&ps=0&w=AAAAAFx4locAAAAAAA4UqlTEVFmeCa3XOuw0bw&pt=1&k=EUMWjAAAAAA=&i=Bc6id1a1ZJ3p&v=6" data-clk="https://max-l.mediav.com/rtb?type=3&d=100&b=1330a441dc&p=&l=&s=2&ps=0&k=EUMWjAAAAAA=&i=Bc6id1a1ZJ3p&v=6&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&tc=&turl="> <info-div class="wrap"> <info-div class="singleImage-img singleImage-img-left"> <info-div class="img" style="background-image:url(https://s3m.mediav.com/galileo/-f4ff36e26510f0c9222dee4a9a.gif)"><info-div class="ads-tag"></info-div></info-div> </info-div> <info-div class="singleImage-body singleImage-body-left"> <info-div class="singleImage-title">股票“三不卖七不买”6字黄金口诀,高手教你一个涨停铁定律</info-div> <info-div class="singleImage-desc">禄基 · 顶新</info-div> </info-div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/DBJ2009/article/details/,BlogCommendFromBaidu_18,index_18"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/DBJ2009/article/details/,BlogCommendFromBaidu_18,index_18"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/DBJ2009/article/details/" target="_blank" title="期望值、均值向量和协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>期望</em>值、均值向量和<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">10-07</span> <span class="read-num hover-hide"> 阅读数 1</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/DBJ2009/article/details/" target="_blank" title="期望值、均值向量和协方差矩阵"> <span class="desc oneline">向量随机变量X的数学期望也是一个向量,其各分量是原X的各个分量的数学期望。如果f(x)是d维随机变量X的n维向量函数 ...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/DBJ2009">来自: <span class="blog_title"> DBJ2009的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/u0/article/details/,searchFromBaidu_19,index_19"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/u0/article/details/,searchFromBaidu_19,index_19"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/u0/article/details/" target="_blank" title="如何求协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 如何求<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">09-11</span> <span class="read-num hover-hide"> 阅读数 734</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/u0/article/details/" target="_blank" title="如何求协方差矩阵"> <span class="desc oneline">如何求协方差矩阵觉得有用的话,欢迎一起讨论相互学习~FollowMe转载自:https://blog.csdn.net/kuang_liu/article/details/非常感谢1....</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/u0">来自: <span class="blog_title"> 遗世独立的乌托邦</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/zhuzuwei/article/details/,searchFromBaidu_20,index_20"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/zhuzuwei/article/details/,searchFromBaidu_20,index_20"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/zhuzuwei/article/details/" target="_blank" title="numpy.cov()求协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> numpy.cov()求<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">09-05</span> <span class="read-num hover-hide"> 阅读数 9703</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/zhuzuwei/article/details/" target="_blank" title="numpy.cov()求协方差矩阵"> <span class="desc oneline">numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None)对给定的数据和权重,估计协方...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/zhuzuwei">来自: <span class="blog_title"> zhuzuwei的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/duanyule_cqu/article/details/,BlogCommendFromGuangxin_21,index_21"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/duanyule_cqu/article/details/,BlogCommendFromGuangxin_21,index_21"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/duanyule_cqu/article/details/" target="_blank" title="协方差矩阵的定义及其计算公式 (转)"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>协方差</em>矩阵的定义及其计算公式 (转) </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">02-10</span> <span class="read-num hover-hide"> 阅读数 3</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/duanyule_cqu/article/details/" target="_blank" title="协方差矩阵的定义及其计算公式 (转)"> <span class="desc oneline">协方差矩阵的定义及其计算公式 (2014-03-2018:36:56)转载▼ 分类: matlab协方差矩阵在机器学习中经常用到,查看wiki:http://zh.wikipedia.org/wiki...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/duanyule_cqu">来自: <span class="blog_title"> duanyule_cqu的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/lyq_12/article/details/,BlogCommendFromGuangxin_22,index_22"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/lyq_12/article/details/,BlogCommendFromGuangxin_22,index_22"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/lyq_12/article/details/" target="_blank" title="协方差、协方差矩阵的数学概念及算法计算"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>协方差</em>、<em>协方差</em>矩阵的数学概念及算法计算 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">11-06</span> <span class="read-num hover-hide"> 阅读数 273</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/lyq_12/article/details/" target="_blank" title="协方差、协方差矩阵的数学概念及算法计算"> <span class="desc oneline">在讲解协方差之前,我们先一起回忆一下样本的均值、方差、标准差的定义。方差,协方差和协方差矩阵1、概念方差(Variance)是度量一组数据的分散程度。方差是各个样本与样本均值的差的平方和的均值: 协方...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/lyq_12">来自: <span class="blog_title"> AMG_GT的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-ad-box"><div id="kp_box_63" data-pid="63" data-track-view="{"mod":"kp_popu_63-555","con":",,"}" data-track-click="{"mod":"kp_popu_63-555","con":",,"}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__04_25" id="QIHOO__WEB__SO__04_25" style="display:block;margin:0;padding:0;border:none;width:852px;height:60px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__04_25-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__04_25 singleImage clk" data-href="https://ssxd.mediav.com/s?type=2&r=20&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441d1d5ac7c&price=AAAAAFx4locAAAAAAAwey7Td9ED2tNEAVZVPag==&finfo=DAABCAABAAAAUQgAAgAAAGEEAAM/S3BHwREzLwAIAAIAAAADCgADa4D8Fl6glzUIAAQAAABhBgAGLbcKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAADHIGAA&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FaixkwIlAhUEFo7KqITCs/CA1wEV8gglodfnhgQlABUaFAAA&ubi=FdzRUBXKq8gCFeD3sBcVtqDYWBUEFRwWiOvfnRcWjsrnud+F/oDXATQGFqjCECUGFaPd8LIGFb4DFQA2sN24neeg9tjEAQA&clickid=0&cpx=__OFFSET_X__&cpy=__OFFSET_Y__&cs=__EVENT_TIME_START__&ce=__EVENT_TIME_END__&csign2=-HCq2EuSXD1=&url=http%3A%2F%2Fgp.arjosx18705.cn%2F" data-pv="https://ssxd.mediav.com/s?type=1&r=20&tid=ZGRkNzY4YWU5Njk3NjhkNmYyODU4ZTQ0MzNiNjU1NTA&finfo=DAABCAABAAAAUQgAAgAAAGEEAAM/S3BHwREzLwAIAAIAAAADCgADa4D8Fl6glzUIAAQAAABhBgAGLbcKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAADHIGAA&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441d1d5ac7c&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FaixkwIlAhUEFo7KqITCs/CA1wEV8gglodfnhgQlABUaFAAA&ubi=FdzRUBXKq8gCFeD3sBcVtqDYWBUEFRwWiOvfnRcWjsrnud+F/oDXATQGFqjCECUGFaPd8LIGFb4DFQA2sN24neeg9tjEAQA&ds=3&price=AAAAAFx4locAAAAAAAwey7Td9ED2tNEAVZVPag==,https://max-l.mediav.com/rtb?type=2&d=100&b=1330a441d1d5ac7c&p=&l=&s=3&z=1&ps=0&w=AAAAAFx4locAAAAAAAwe-Oo9ykoZUUdgHLJNPg&pt=1&k=i2pfAgAAAAA=&i=OC60fIa1ZJZz&v=6" data-clk="https://max-l.mediav.com/rtb?type=3&d=100&b=1330a441d1d5ac7c&p=&l=&s=3&ps=0&k=i2pfAgAAAAA=&i=OC60fIa1ZJZz&v=6&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&tc=&turl="> <info-div class="wrap"> <info-div class="singleImage-img singleImage-img-left"> <info-div class="img" style="background-image:url(https://s3m.mediav.com/galileo/-f4ff36e26510f0c9222dee4a9a.gif)"><info-div class="ads-tag"></info-div></info-div> </info-div> <info-div class="singleImage-body singleImage-body-left"> <info-div class="singleImage-title">股票“三不卖七不买”6字黄金口诀,高手教你一个涨停铁定律</info-div> <info-div class="singleImage-desc">禄基 · 顶新</info-div> </info-div>
<div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/liuweiyuxiang/article/details/,BlogCommendFromGuangxin_23,index_23"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/liuweiyuxiang/article/details/,BlogCommendFromGuangxin_23,index_23"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/liuweiyuxiang/article/details/" target="_blank" title="机器学习中的数学(3)——协方差矩阵和散布(散度)矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 机器学习中的数学(3)——<em>协方差</em>矩阵和散布(散度)矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">08-25</span> <span class="read-num hover-hide"> 阅读数 2178</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/liuweiyuxiang/article/details/" target="_blank" title="机器学习中的数学(3)——协方差矩阵和散布(散度)矩阵"> <span class="desc oneline">1、引言在学习机器学习算法和阅读相关论文的时候,将经常会看到协方差矩阵和散布矩阵的身影,这说明它们在机器学习中具有很重要的作用,究竟有什么样的作用,下面我们就做简要的介绍和分析。2、统计学上的基本概念...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/liuweiyuxiang">来自: <span class="blog_title"> Lavi的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/u0/article/details/,BlogCommendFromGuangxin_24,index_24"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/u0/article/details/,BlogCommendFromGuangxin_24,index_24"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/u0/article/details/" target="_blank" title="numpy求协方差矩阵(numpy.cov())"> <h4 class="text-truncate oneline" style="width: 802px;"> numpy求<em>协方差</em>矩阵(numpy.cov()) </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">12-02</span> <span class="read-num hover-hide"> 阅读数 244</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/u0/article/details/" target="_blank" title="numpy求协方差矩阵(numpy.cov())"> <span class="desc oneline">1、关于方差与协方差方差公式:方差度量协方差公式:协方差矩阵的介绍和计算见:https://blog.csdn.net/Mr_HHH/article/details/、numpy.c...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/u0">来自: <span class="blog_title"> 漫步云端</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/duankaifei/article/details/,BlogCommendFromQuerySearch_25,index_25"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/duankaifei/article/details/,BlogCommendFromQuerySearch_25,index_25"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/duankaifei/article/details/" target="_blank" title="期望,方差,协方差,标准差,协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>期望</em>,<em>方差</em>,<em>协方差</em>,标准差,<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">03-06</span> <span class="read-num hover-hide"> 阅读数 3096</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/duankaifei/article/details/" target="_blank" title="期望,方差,协方差,标准差,协方差矩阵"> <span class="desc oneline">一些公式会用到的函数期望:mean方差:var协方差:cov标准差:std相关系数:暂时没找到具体的各个函数用法见链接补充的说明:协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。拿到一个...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/duankaifei">来自: <span class="blog_title"> 1oscar的专栏</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/fisherming/article/details/,BlogCommendFromQuerySearch_26,index_26"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/fisherming/article/details/,BlogCommendFromQuerySearch_26,index_26"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/fisherming/article/details/" target="_blank" title="期望、方差、标准差、偏差、协方差和协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> <em>期望</em>、<em>方差</em>、标准差、偏差、<em>协方差</em>和<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">04-01</span> <span class="read-num hover-hide"> 阅读数 599</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/fisherming/article/details/" target="_blank" title="期望、方差、标准差、偏差、协方差和协方差矩阵"> <span class="desc oneline">期望一件事情有n种结果,每一种结果值为xixix_i,发生的概率记为pipip_i,那么该事件发生的期望为:E=∑i=1nxipiE=∑i=1nxipiE=\sum_{i=1}^{n}{x_i}{p_...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/fisherming">来自: <span class="blog_title"> 刘明的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-box-ident type_blog clearfix" data-track-view="{"mod":"popu_614","con":",https://blog.csdn.net/deng/article/details/,BlogCommendFromQuerySearch_27,index_27"}" data-track-click="{"mod":"popu_614","con":",https://blog.csdn.net/deng/article/details/,BlogCommendFromQuerySearch_27,index_27"}" data-flg="true"> <div class="content" style="width: 962px;"> <a href="https://blog.csdn.net/deng/article/details/" target="_blank" title="向量的期望值、均值向量和协方差矩阵"> <h4 class="text-truncate oneline" style="width: 802px;"> 向量的<em>期望</em>值、均值向量和<em>协方差</em>矩阵 </h4> <div class="info-box d-flex align-content-center"> <p class="date-and-readNum oneline"> <span class="date hover-show">04-12</span> <span class="read-num hover-hide"> 阅读数 2710</span> </p> </div> </a> <p class="content" style="width: 962px;"> <a href="https://blog.csdn.net/deng/article/details/" target="_blank" title="向量的期望值、均值向量和协方差矩阵"> <span class="desc oneline">向量随机变量X的数学期望也是一个向量,其各分量是原X的各个分量的数学期望。如果f(x)是d维随机变量X的n维向量函数 ...</span> </a> <span class="blog_title_box oneline "> <span class="type-show type-show-blog type-show-after">博文</span> <a target="_blank" href="https://blog.csdn.net/deng">来自: <span class="blog_title"> deng的博客</span></a> </span> </p> </div> </div> <div class="recommend-item-box recommend-ad-box"><div id="kp_box_64" data-pid="64" data-track-view="{"mod":"kp_popu_64-81","con":",,"}" data-track-click="{"mod":"kp_popu_64-81","con":",,"}"><div class="mediav_ad"><newsfeed class="newsfeed QIHOO__WEB__SO__52_904" id="QIHOO__WEB__SO__52_904" style="display:block;margin:0;padding:0;border:none;width:852px;height:60px;overflow-y:hidden;overflow-x:hidden;position:relative;text-align:left;"><info-div id="QIHOO__WEB__SO__52_904-info" style="zoom:1"><info-div class="QIHOO__WEB__SO__52_904 singleImage clk" data-href="https://ssxd.mediav.com/s?type=2&r=20&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441dc&price=AAAAAFx4locAAAAAAA4VBjO9GOBbyNcD8Piudw==&finfo=DAABCAABAAAAbQgAAgAAADwEAAM/XOmXratInwAIAAIAAAADCgADe+Jb+Oa1LeAIAAQAAAA+BgAGLbcKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAAEKHQAA&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FeTGlAIlAhUEFo7KjYD2q6Di9wEV8ggll7bisg0lABUaFAAA&ubi=FZDCUBWg58gCFaL8shcVip3XWBUEFRwWpJPDnRcWjsrMtZP+reL3ATQGFqjCECUGFcOVlcYKFaYBFQA2/63E68TgnPpSAA&clickid=0&cpx=__OFFSET_X__&cpy=__OFFSET_Y__&cs=__EVENT_TIME_START__&ce=__EVENT_TIME_END__&csign2=SM1IFWX0BJL=&url=http%3A%2F%2Fww.yoy5.cn%2F1" data-pv="https://ssxd.mediav.com/s?type=1&r=20&tid=ZGRkNzY4YWU5Njk3NjhkNmYyODU4ZTQ0MzNiNjU1NTA&finfo=DAABCAABAAAAbQgAAgAAADwEAAM/XOmXratInwAIAAIAAAADCgADe+Jb+Oa1LeAIAAQAAAA+BgAGLbcKAAkAAAAAAAIQlAYACgAACAAOAAAAPAoADwAAAAAAEKHQAA&mv_ref=blog.csdn.net&enup=CAABcvc4zQgAAs0493IA&mvid=ODI2MTY2NDUwMjYxMjEwMjgwMjAwMTY&bid=1330a441dc&ugi=FcTgigEVyNtrTBUCFSgVKBUAABXbqbjuBxaECBXIARaAv+vt4L/BBQA&uai=FeTGlAIlAhUEFo7KjYD2q6Di9wEV8ggll7bisg0lABUaFAAA&ubi=FZDCUBWg58gCFaL8shcVip3XWBUEFRwWpJPDnRcWjsrMtZP+reL3ATQGFqjCECUGFcOVlcYKFaYBFQA2/63E68TgnPpSAA&ds=3&price=AAAAAFx4locAAAAAAA4VBjO9GOBbyNcD8Piudw==,https://max-l.mediav.com/rtb?type=2&d=100&b=1330a441dc&p=&l=&s=3&z=1&ps=0&w=AAAAAFx4locAAAAAAA4VKiB2L9A3LDBkARFZ0A&pt=1&k=EUMWjAAAAAA=&i=BNGid1a1ZJgj&v=6" data-clk="https://max-l.mediav.com/rtb?type=3&d=100&b=1330a441dc&p=&l=&s=3&ps=0&k=EUMWjAAAAAA=&i=BNGid1a1ZJgj&v=6&x=__OFFSET_X__&y=__OFFSET_Y__&st=__EVENT_TIME_START__&et=__EVENT_TIME_END__&tc=&turl="> <info-div class="wrap"> <info-div class="singleImage-img singleImage-img-left"> <info-div class="img" style="background-image:url(https://s3m.mediav.com/galileo/-3b43714e4bd3ee0003585c1b5e4cf11a.gif)"><i
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/142701.html