大家好,欢迎来到IT知识分享网。
第二类换元法是:适当选择变量代换 x = ψ ( t ) x = \psi(t) x=ψ(t) ,将积分 ∫ f ( x ) d x \int f(x) \mathrm{d}x ∫f(x)dx 化为积分 ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f[\psi(t)]\psi'(t)\mathrm{d}t ∫f[ψ(t)]ψ′(t)dt .这是另一种形式的变量代换,换元公式可表达为
∫ f ( x ) d x = ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f(x) \mathrm{d}x = \int f[\psi(t)] \psi'(t) \mathrm{d}t ∫f(x)dx=∫f[ψ(t)]ψ′(t)dt
这公式成立是需要一定条件的。首先,等式右边的不定积分要存在,即 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)] \psi'(t) f[ψ(t)]ψ′(t) 有原函数;其次, ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f[\psi(t)] \psi'(t) \mathrm{d}t ∫f[ψ(t)]ψ′(t)dt 求出后必须用 x = ψ ( t ) x = \psi(t) x=ψ(t) 的反函数 t = ψ − 1 ( x ) t = \psi^{-1} (x) t=ψ−1(x) 代回去,为了保证这反函数存在且可导,我们假定直接函数 x = ψ ( t ) x = \psi(t) x=ψ(t) 在 t t t 的某一个区间上式单调的、可导的、并且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ′(t)=0 。
定理 设 x = ψ ( t ) x = \psi(t) x=ψ(t) 是单调的可导函数,并且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ′(t)=0 .又设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ′(t) 具有原函数,则有换元公式
∫ f ( x ) d x = [ ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t ] t = ψ − 1 ( x ) (1) \int f(x) \mathrm{d}x = \left[ \int f[\psi(t)] \psi'(t) \mathrm{d}t \right]_{t = \psi^{-1}(x)} \tag{1} ∫f(x)dx=[∫f[ψ(t)]ψ′(t)dt]t=ψ−1(x)(1)
其中 ψ − 1 ( x ) \psi^{-1}(x) ψ−1(x) 是 x = ψ ( t ) x = \psi (t) x=ψ(t) 的反函数。
证明:设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ′(t) 的原函数为 Φ ( t ) \Phi(t) Φ(t) ,记 Φ [ ψ − 1 ( x ) ] = F ( x ) \Phi[\psi^{-1}(x)] = F(x) Φ[ψ−1(x)]=F(x) ,利用复合函数及反函数的求导法则,得到
F ′ ( x ) = d Φ d t ⋅ d t d x = f [ ψ ( t ) ] ψ ′ ( t ) ⋅ 1 ψ ′ ( t ) = f [ ψ ( t ) ] = f ( x ) F'(x) = \cfrac{\mathrm{d} \Phi}{\mathrm{d}t} \cdot \cfrac{\mathrm{d}t}{\mathrm{d}x} = f[\psi(t)]\psi'(t) \cdot \cfrac{1}{\psi'(t)} = f[\psi(t)] = f(x) F′(x)=dtdΦ⋅dxdt=f[ψ(t)]ψ′(t)⋅ψ′(t)1=f[ψ(t)]=f(x)
即 F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的原函数。所以有
∫ f ( x ) d x = F ( x ) + C = Φ [ ψ − 1 ( x ) ] + C = [ ∫ f [ ψ ( t ) ] ψ ′ t d t ] t = ψ − 1 ( x ) . \int f(x) \mathrm{d}x = F(x) + C = \Phi[\psi^{-1}(x)] + C = \left[ \int f[\psi(t)] \psi'{t} \mathrm{d}t \right]_{t = \psi^{-1}(x)} . ∫f(x)dx=F(x)+C=Φ[ψ−1(x)]+C=[∫f[ψ(t)]ψ′tdt]t=ψ−1(x).
这就证明了换元公式 ( 1 ) (1) (1) 。
例21 求 ∫ a 2 − x 2 d x ( a > 0 ) \displaystyle \int \sqrt{a^2 – x^2} \mathrm{d}x (a > 0) ∫a2−x2dx(a>0) .
解:这个积分的困难在于有根式 a 2 − x 2 \sqrt{a^2 – x^2} a2−x2 ,但我们可以利用三角函数公式
sin 2 t + cos 2 t = 1 \sin^2t + \cos^2t = 1 sin2t+cos2t=1
来化去根式。
设 x = sin t , − π 2 < t < π 2 x = \sin t, – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} x=sint,−2π<t<2π ,则 a 2 − x 2 = a 2 − a 2 sin 2 t = a cos t , d x = a cos t d t \sqrt{a^2 – x^2} = \sqrt{a^2 – a^2 \sin^2t} = a \cos t, \mathrm{d}x = a \cos t \mathrm{d}t a2−x2=a2−a2sin2t=acost,dx=acostdt ,所求积分化为
∫ a 2 − x 2 d x = ∫ a cos t ⋅ a cos t d t = a 2 ∫ cos 2 t d t . \int \sqrt{a^2 – x^2} \mathrm{d}x = \int a \cos t \cdot a \cos t \mathrm{d}t = a^2 \int \cos^2 t \mathrm{d}t. ∫a2−x2dx=∫acost⋅acostdt=a2∫cos2tdt.
又
∫ a 2 − x 2 d x = a 2 ( t 2 + sin 2 t 4 ) + C = a 2 2 t + a 2 2 sin t cos t + C . \int \sqrt{a^2 – x^2} \mathrm{d}x = a^2 \left( \cfrac{t}{2} + \cfrac{\sin 2t}{4} \right) +C = \cfrac{a^2}{2} t + \cfrac{a^2}{2} \sin t \cos t + C . ∫a2−x2dx=a2(2t+4sin2t)+C=2a2t+2a2sintcost+C.
由于 x = sin t , − π 2 < t < π 2 x = \sin t, – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} x=sint,−2π<t<2π ,所以
t = arcsin x a , cos t = 1 − sin 2 t = 1 − ( x a ) 2 = a 2 − x 2 a , t = \arcsin \cfrac{x}{a} , \\ \cos t = \sqrt{1 – \sin^2t} = \sqrt{1 – \left( \cfrac{x}{a} \right)^2} = \cfrac{\sqrt{a^2 – x^2}}{a} , t=arcsinax,cost=1−sin2t=1−(ax)2=aa2−x2,
于是所求积分为
∫ a 2 − x 2 d x = a 2 2 arcsin x a + 1 2 x a 2 − x 2 + C . \int \sqrt{a^2 – x^2} \mathrm{d}x = \cfrac{a^2}{2} \arcsin \cfrac{x}{a} + \cfrac{1}{2} x \sqrt{a^2 – x^2} + C . ∫a2−x2dx=2a2arcsinax+21xa2−x2+C.
例22 求 ∫ d x x 2 + a 2 ( a > 0 ) \displaystyle \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} (a>0) ∫x2+a2dx(a>0) .
解:可利用三角函数公式
1 + tan 2 t = sec 2 t 1 + \tan^2 t = \sec^2 t 1+tan2t=sec2t
来化去根式。
设 x = a tan t ( − π 2 < t < π 2 ) x = a \tan t \left( – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} \right) x=atant(−2π<t<2π) ,则
x 2 + a 2 = a 2 tan 2 t + a 2 = a tan 2 t + 1 = a sec t , d x = a sec 2 t d t , \sqrt{x^2 + a^2} = \sqrt{a^2 \tan^2 t + a^2} = a \sqrt{\tan^2 t + 1} = a \sec t, \mathrm{d}x = a \sec^2t \mathrm{d}t, x2+a2=a2tan2t+a2=atan2t+1=asect,dx=asec2tdt,
于是
∫ d x x 2 + a 2 = ∫ a sec 2 t a sec t d t = ∫ sec t d t = ln ∣ sec t + tan t ∣ + C . \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \int \cfrac{a \sec^2 t}{a \sec t} \mathrm{d}t = \int \sec t \mathrm{d}t = \ln{|\sec t + \tan t|} + C . ∫x2+a2dx=∫asectasec2tdt=∫sectdt=ln∣sect+tant∣+C.
为了把 sec t \sec t sect 及 tan t \tan t tant 转换成 x x x 的函数,可以根据 tan t = x a \tan t = \cfrac{x}{a} tant=ax 作辅助三角形,便有
sec t = x 2 + a 2 a , \sec t = \cfrac{\sqrt{x^2 + a^2}}{a}, sect=ax2+a2,
且 sec t + tan t > 0 \sec t + \tan t > 0 sect+tant>0,因此,
∫ d x x 2 + a 2 = ln ( x a + x 2 + a 2 a ) + C = ln ( x + x 2 + a 2 ) + C 1 , \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln{\left( \cfrac{x}{a} + \cfrac{\sqrt{x^2 + a^2}}{a} \right)} + C = \ln{(x + \sqrt{x^2 + a^2})} + C_1, ∫x2+a2dx=ln(ax+ax2+a2)+C=ln(x+x2+a2)+C1,
其中 C 1 = C − ln a C_1 = C – \ln a C1=C−lna .
例23 ∫ d x x 2 − a 2 ( a > 0 ) \displaystyle \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} (a>0) ∫x2−a2dx(a>0) .
解:可利用公式
sec 2 t − 1 = tan 2 t \sec^2 t – 1 = \tan^2 t sec2t−1=tan2t
来化去根式。注意到被积函数的定义域是 x > a x > a x>a 和 x < − a x < -a x<−a 两个区间,我们在两个区间内分别求不定积分。
当 x > a x > a x>a 时,设 x = a sec t ( 0 < t < π 2 ) x = a\sec t \left( 0 < t < \cfrac{\pi}{2} \right) x=asect(0<t<2π),则
x 2 − a 2 = a 2 sec 2 t − a 2 = a sec 2 t − 1 = a tan t , d x = a sec t tan t d t , \sqrt{x^2 – a^2} = \sqrt{a^2 \sec^2 t – a^2} = a \sqrt{\sec^2 t – 1} = a\tan t, \\ \mathrm{d}x = a \sec t \tan t \mathrm{d}t, x2−a2=a2sec2t−a2=asec2t−1=atant,dx=asecttantdt,
于是
∫ d x x 2 − a 2 = ∫ a sec t tan t a tan t d t = ∫ sec t d t = ln ( sec t + tan t ) + C . \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} = \int \cfrac{a \sec t \tan t}{a \tan t} \mathrm{d}t = \int \sec t \mathrm{d}t = \ln{(\sec t + \tan t)} + C. ∫x2−a2dx=∫atantasecttantdt=∫sectdt=ln(sect+tant)+C.
根据 sec t = x a \sec t = \cfrac{x}{a} sect=ax 作辅助三角形得
tan t = x 2 − a 2 a \tan t = \cfrac{\sqrt{x^2 – a^2}}{a} tant=ax2−a2
因此
∫ d x x 2 − a 2 = ln ( x a + x 2 − a 2 a ) + C = ln ( x + x 2 − a 2 ) + C 1 \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} = \ln{\left( \cfrac{x}{a} + \cfrac{\sqrt{x^2 – a^2}}{a} \right)} + C = \ln{(x + \sqrt{x^2 – a^2})} + C_1 ∫x2−a2dx=ln(ax+ax2−a2)+C=ln(x+x2−a2)+C1
其中 C 1 = C − ln a C_1 = C – \ln a C1=C−lna .
当 x < − a x < -a x<−a 时,令 x = − u x = -u x=−u,那么 u > a u > a u>a,由上段结果,有
∫ d x x 2 − a 2 = − ∫ d u u 2 − a 2 = − ln ( u + u 2 − a 2 ) + C = − ln ( − x + x 2 − a 2 ) + C = ln − x − x 2 − a 2 a 2 + C = ln ( − x − x 2 − a 2 ) + C 1 \begin{align*} \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} &= – \int \cfrac{\mathrm{d}u}{\sqrt{u^2 – a^2}} = – \ln{(u + \sqrt{u^2 – a^2})} + C \\ &= – \ln{(-x + \sqrt{x^2 – a^2})} + C = \ln{\cfrac{-x – \sqrt{x^2 – a^2}}{a^2}} + C \\ &=\ln{(-x – \sqrt{x^2 – a^2})} + C_1 \end{align*} ∫x2−a2dx=−∫u2−a2du=−ln(u+u2−a2)+C=−ln(−x+x2−a2)+C=lna2−x−x2−a2+C=ln(−x−x2−a2)+C1
其中 C 1 = C − 2 ln a C_1 = C – 2 \ln a C1=C−2lna.
把 x > a x > a x>a 及 x < − a x < -a x<−a 内的结果合起来,得,
∫ d x x 2 − a 2 = ln ∣ x + x 2 − a 2 ∣ + C \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} = \ln{|x + \sqrt{x^2 – a^2}|} + C ∫x2−a2dx=ln∣x+x2−a2∣+C
从上述三个例子可知:
- 如果被积函数含有 a 2 − x 2 \sqrt{a^2 – x^2} a2−x2 ,可以作代换 x = a sin t x = a \sin t x=asint 化去根式;
- 如果被积函数含有 x 2 + a 2 \sqrt{x^2 + a^2} x2+a2 ,可以作代换 x = a tan t x = a \tan t x=atant 化去根式;
- 如果被积函数含有 x 2 − a 2 \sqrt{x^2 – a^2} x2−a2 ,可以作代换 x = ± a sec t x = \pm a \sec t x=±asect 化去根式.
可以利用另一种代换——倒代换 消去被积函数的分母中的变量因子 x x x 。
例24 求 ∫ a 2 − x 2 x 4 d x ( a ≠ 0 ) \displaystyle \int \cfrac{\sqrt{a^2 – x^2}}{x^4} \mathrm{d}x (a \neq 0) ∫x4a2−x2dx(a=0) .
解:设 x = 1 t x = \cfrac{1}{t} x=t1 ,则 d x = − d t t 2 \mathrm{d}x = – \cfrac{\mathrm{d}t}{t^2} dx=−t2dt,于是
∫ a 2 − x 2 x 4 d x = ∫ a 2 − 1 t 2 ⋅ ( − d t t 2 ) 1 t 4 = − ∫ ( a 2 t 2 − 1 ) 1 2 ∣ t ∣ d t , \int \cfrac{\sqrt{a^2 – x^2}}{x^4} \mathrm{d}x = \int \cfrac{\sqrt{a^2 – \cfrac{1}{t^2}} \cdot \left( – \cfrac{\mathrm{d}t}{t^2} \right)}{\cfrac{1}{t^4}} = – \int (a^2 t^2 – 1)^{\frac{1}{2}} |t| \mathrm{d}t, ∫x4a2−x2dx=∫t41a2−t21⋅(−t2dt)=−∫(a2t2−1)21∣t∣dt,
当 x > 0 x > 0 x>0 时,有
∫ a 2 − x 2 x 4 d x = − 1 2 a ∫ ( a 2 t 2 − 1 ) 1 2 d ( a 2 t 2 − 1 ) = − ( a 2 t 2 − 1 ) 3 2 3 a 2 + C = − ( a 2 − x 2 ) 3 2 3 a 2 x 3 + C \begin{align*} \int \cfrac{\sqrt{a^2 – x^2}}{x^4} \mathrm{d}x &= – \cfrac{1}{2a} \int (a^2 t^2 – 1)^{\frac{1}{2}}\mathrm{d}(a^2 t^2 – 1) \\ &= – \cfrac{(a^2 t^2 – 1)^{\frac{3}{2}}}{3 a^2} + C \\ &= – \cfrac{(a^2 – x^2)^{\frac{3}{2}}}{3 a^2 x^3} + C \end{align*} ∫x4a2−x2dx=−2a1∫(a2t2−1)21d(a2t2−1)=−3a2(a2t2−1)23+C=−3a2x3(a2−x2)23+C
例27 求 ∫ x 3 ( x 2 − 2 x + 2 ) 2 d x \displaystyle \int \cfrac{x^3}{(x^2 – 2x + 2)^2} \mathrm{d}x ∫(x2−2x+2)2x3dx .
解:分母是二次质因式的平方,把二次质因式配方成 ( x − 1 ) 2 + 1 (x – 1)^2 + 1 (x−1)2+1 ,令 x − 1 = tan t ( − π 2 < t < π 2 ) x – 1 = \tan t \left( – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} \right) x−1=tant(−2π<t<2π) ,则
x 2 − 2 x + 2 = sec 2 t , d x = sec 2 t d t . x^2 – 2x + 2 = \sec^2 t, \quad \mathrm{d}x = \sec^2 t \mathrm{d}t . x2−2x+2=sec2t,dx=sec2tdt.
于是
∫ x 3 ( x 2 − 2 x + 2 ) 2 d x = ∫ ( tan t + 1 ) 3 sec 4 t ⋅ sec 2 t d t = ∫ ( sin 3 t cos − 1 t + 3 sin 2 t + 3 sin t cos t + cos 2 t ) d t = ∫ ( sin 2 t cos − 1 t + 3 cos t ) sin t d t + ∫ ( 3 sin 2 t + cos 2 t ) d t = ∫ [ ( 1 − cos 2 t ) cos − 1 t + 3 cos t ] [ − d ( cos t ) ] + ∫ ( 2 − cos 2 t ) d t = − ∫ ( cos − 1 t + 2 cos t ) d ( cos t ) + 2 t − 1 2 sin 2 t = − ln cos t − cos 2 t + 2 t − sin t cos t + C , \begin{align*} \int \cfrac{x^3}{(x^2 – 2x + 2)^2} \mathrm{d}x &= \int \cfrac{(\tan t + 1)^3}{\sec^4 t} \cdot \sec^2 t \mathrm{d}t \\ &= \int (\sin^3 t \cos^{-1}t + 3\sin^2 t + 3\sin t \cos t + \cos^2 t) \mathrm{d}t \\ &= \int (\sin^2 t \cos^{-1}t + 3 \cos t) \sin t \mathrm{d}t + \int (3\sin^2 t + \cos^2 t) \mathrm{d}t \\ &= \int [(1 – \cos^2 t) \cos^{-1}t + 3 \cos t][- \mathrm{d}(\cos t)] + \int (2 – \cos 2t) \mathrm{d}t \\ &= – \int (\cos^{-1} t + 2\cos t) \mathrm{d}(\cos t) + 2t – \cfrac{1}{2} \sin 2t \\ &= -\ln{\cos t} – \cos^2 t + 2t – \sin t \cos t + C, \end{align*} ∫(x2−2x+2)2x3dx=∫sec4t(tant+1)3⋅sec2tdt=∫(sin3tcos−1t+3sin2t+3sintcost+cos2t)dt=∫(sin2tcos−1t+3cost)sintdt+∫(3sin2t+cos2t)dt=∫[(1−cos2t)cos−1t+3cost][−d(cost)]+∫(2−cos2t)dt=−∫(cos−1t+2cost)d(cost)+2t−21sin2t=−lncost−cos2t+2t−sintcost+C,
按 tan t = x − 1 \tan t = x – 1 tant=x−1 作辅助三角形,便有
cos t = 1 x 2 − 2 x + 2 , sin t = x − 1 x 2 − 2 x + 2 , \cos t = \cfrac{1}{\sqrt{x^2 – 2x + 2}}, \quad \sin t = \cfrac{x – 1}{\sqrt{x^2 – 2x + 2}}, cost=x2−2x+21,sint=x2−2x+2x−1,
于是
∫ x 3 ( x 2 − 2 x + 2 ) 2 d x = 1 2 ln ( x 2 − 2 x + 2 ) + 2 arctan ( x − 1 ) − x x 2 − 2 x + 2 + C . \int \cfrac{x^3}{(x^2 – 2x + 2)^2} \mathrm{d}x = \cfrac{1}{2} \ln{(x^2 – 2x + 2)} + 2 \arctan{(x – 1)} – \cfrac{x}{x^2 – 2x + 2} + C. ∫(x2−2x+2)2x3dx=21ln(x2−2x+2)+2arctan(x−1)−x2−2x+2x+C.
原文链接:高等数学 4.2 换元积分法(二)第二类换元法
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/143807.html