高等数学 4.2 换元积分法(二)第二类换元法

高等数学 4.2 换元积分法(二)第二类换元法第二类换元法是 适当选择变量代换 x t x psi t x t 将积分 f x dx intf x mathrm d x f x dx 化为积分 f t t dt int

大家好,欢迎来到IT知识分享网。

第二类换元法是:适当选择变量代换 x = ψ ( t ) x = \psi(t) x=ψ(t) ,将积分 ∫ f ( x ) d x \int f(x) \mathrm{d}x f(x)dx 化为积分 ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f[\psi(t)]\psi'(t)\mathrm{d}t f[ψ(t)]ψ(t)dt .这是另一种形式的变量代换,换元公式可表达为
∫ f ( x ) d x = ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f(x) \mathrm{d}x = \int f[\psi(t)] \psi'(t) \mathrm{d}t f(x)dx=f[ψ(t)]ψ(t)dt

这公式成立是需要一定条件的。首先,等式右边的不定积分要存在,即 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)] \psi'(t) f[ψ(t)]ψ(t) 有原函数;其次, ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f[\psi(t)] \psi'(t) \mathrm{d}t f[ψ(t)]ψ(t)dt 求出后必须用 x = ψ ( t ) x = \psi(t) x=ψ(t) 的反函数 t = ψ − 1 ( x ) t = \psi^{-1} (x) t=ψ1(x) 代回去,为了保证这反函数存在且可导,我们假定直接函数 x = ψ ( t ) x = \psi(t) x=ψ(t) t t t 的某一个区间上式单调的可导的、并且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ(t)=0

定理 设 x = ψ ( t ) x = \psi(t) x=ψ(t) 是单调的可导函数,并且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ(t)=0 .又设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ(t) 具有原函数,则有换元公式
∫ f ( x ) d x = [ ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t ] t = ψ − 1 ( x ) (1) \int f(x) \mathrm{d}x = \left[ \int f[\psi(t)] \psi'(t) \mathrm{d}t \right]_{t = \psi^{-1}(x)} \tag{1} f(x)dx=[f[ψ(t)]ψ(t)dt]t=ψ1(x)(1)
其中 ψ − 1 ( x ) \psi^{-1}(x) ψ1(x) x = ψ ( t ) x = \psi (t) x=ψ(t) 的反函数。

证明:设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ(t) 的原函数为 Φ ( t ) \Phi(t) Φ(t) ,记 Φ [ ψ − 1 ( x ) ] = F ( x ) \Phi[\psi^{-1}(x)] = F(x) Φ[ψ1(x)]=F(x) ,利用复合函数及反函数的求导法则,得到
F ′ ( x ) = d Φ d t ⋅ d t d x = f [ ψ ( t ) ] ψ ′ ( t ) ⋅ 1 ψ ′ ( t ) = f [ ψ ( t ) ] = f ( x ) F'(x) = \cfrac{\mathrm{d} \Phi}{\mathrm{d}t} \cdot \cfrac{\mathrm{d}t}{\mathrm{d}x} = f[\psi(t)]\psi'(t) \cdot \cfrac{1}{\psi'(t)} = f[\psi(t)] = f(x) F(x)=dtdΦdxdt=f[ψ(t)]ψ(t)ψ(t)1=f[ψ(t)]=f(x)
F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的原函数。所以有
∫ f ( x ) d x = F ( x ) + C = Φ [ ψ − 1 ( x ) ] + C = [ ∫ f [ ψ ( t ) ] ψ ′ t d t ] t = ψ − 1 ( x ) . \int f(x) \mathrm{d}x = F(x) + C = \Phi[\psi^{-1}(x)] + C = \left[ \int f[\psi(t)] \psi'{t} \mathrm{d}t \right]_{t = \psi^{-1}(x)} . f(x)dx=F(x)+C=Φ[ψ1(x)]+C=[f[ψ(t)]ψtdt]t=ψ1(x).
这就证明了换元公式 ( 1 ) (1) (1)

例21 求 ∫ a 2 − x 2 d x ( a > 0 ) \displaystyle \int \sqrt{a^2 – x^2} \mathrm{d}x (a > 0) a2x2
dx(a>
0)
.
解:这个积分的困难在于有根式 a 2 − x 2 \sqrt{a^2 – x^2} a2x2
,但我们可以利用三角函数公式
sin ⁡ 2 t + cos ⁡ 2 t = 1 \sin^2t + \cos^2t = 1 sin2t+cos2t=1
来化去根式。
x = sin ⁡ t , − π 2 < t < π 2 x = \sin t, – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} x=sint,2π<t<2π ,则 a 2 − x 2 = a 2 − a 2 sin ⁡ 2 t = a cos ⁡ t , d x = a cos ⁡ t d t \sqrt{a^2 – x^2} = \sqrt{a^2 – a^2 \sin^2t} = a \cos t, \mathrm{d}x = a \cos t \mathrm{d}t a2x2
=
a2a2sin2t
=
acost,dx=acostdt
,所求积分化为
∫ a 2 − x 2 d x = ∫ a cos ⁡ t ⋅ a cos ⁡ t d t = a 2 ∫ cos ⁡ 2 t d t . \int \sqrt{a^2 – x^2} \mathrm{d}x = \int a \cos t \cdot a \cos t \mathrm{d}t = a^2 \int \cos^2 t \mathrm{d}t. a2x2
dx=
acostacostdt=a2cos2tdt.


∫ a 2 − x 2 d x = a 2 ( t 2 + sin ⁡ 2 t 4 ) + C = a 2 2 t + a 2 2 sin ⁡ t cos ⁡ t + C . \int \sqrt{a^2 – x^2} \mathrm{d}x = a^2 \left( \cfrac{t}{2} + \cfrac{\sin 2t}{4} \right) +C = \cfrac{a^2}{2} t + \cfrac{a^2}{2} \sin t \cos t + C . a2x2
dx=
a2(2t+4sin2t)+C=2a2t+2a2sintcost+C.

由于 x = sin ⁡ t , − π 2 < t < π 2 x = \sin t, – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} x=sint,2π<t<2π ,所以
t = arcsin ⁡ x a , cos ⁡ t = 1 − sin ⁡ 2 t = 1 − ( x a ) 2 = a 2 − x 2 a , t = \arcsin \cfrac{x}{a} , \\ \cos t = \sqrt{1 – \sin^2t} = \sqrt{1 – \left( \cfrac{x}{a} \right)^2} = \cfrac{\sqrt{a^2 – x^2}}{a} , t=arcsinax,cost=1sin2t
=
1(ax)2
=
aa2x2
,

于是所求积分为
∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + 1 2 x a 2 − x 2 + C . \int \sqrt{a^2 – x^2} \mathrm{d}x = \cfrac{a^2}{2} \arcsin \cfrac{x}{a} + \cfrac{1}{2} x \sqrt{a^2 – x^2} + C . a2x2
dx=
2a2arcsinax+21xa2x2
+
C.

例22 求 ∫ d x x 2 + a 2 ( a > 0 ) \displaystyle \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} (a>0) x2+a2
dx
(a>
0)
.
解:可利用三角函数公式
1 + tan ⁡ 2 t = sec ⁡ 2 t 1 + \tan^2 t = \sec^2 t 1+tan2t=sec2t
来化去根式。
x = a tan ⁡ t ( − π 2 < t < π 2 ) x = a \tan t \left( – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} \right) x=atant(2π<t<2π) ,则
x 2 + a 2 = a 2 tan ⁡ 2 t + a 2 = a tan ⁡ 2 t + 1 = a sec ⁡ t , d x = a sec ⁡ 2 t d t , \sqrt{x^2 + a^2} = \sqrt{a^2 \tan^2 t + a^2} = a \sqrt{\tan^2 t + 1} = a \sec t, \mathrm{d}x = a \sec^2t \mathrm{d}t, x2+a2
=
a2tan2t+a2
=
atan2t+1
=
asect,dx=asec2tdt,

于是
∫ d x x 2 + a 2 = ∫ a sec ⁡ 2 t a sec ⁡ t d t = ∫ sec ⁡ t d t = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C . \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \int \cfrac{a \sec^2 t}{a \sec t} \mathrm{d}t = \int \sec t \mathrm{d}t = \ln{|\sec t + \tan t|} + C . x2+a2
dx
=
asectasec2tdt=sectdt=lnsect+tant+C.

为了把 sec ⁡ t \sec t sect tan ⁡ t \tan t tant 转换成 x x x 的函数,可以根据 tan ⁡ t = x a \tan t = \cfrac{x}{a} tant=ax 作辅助三角形,便有
sec ⁡ t = x 2 + a 2 a , \sec t = \cfrac{\sqrt{x^2 + a^2}}{a}, sect=ax2+a2
,

sec ⁡ t + tan ⁡ t > 0 \sec t + \tan t > 0 sect+tant>0,因此,
∫ d x x 2 + a 2 = ln ⁡ ( x a + x 2 + a 2 a ) + C = ln ⁡ ( x + x 2 + a 2 ) + C 1 , \int \cfrac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln{\left( \cfrac{x}{a} + \cfrac{\sqrt{x^2 + a^2}}{a} \right)} + C = \ln{(x + \sqrt{x^2 + a^2})} + C_1, x2+a2
dx
=
ln(ax+ax2+a2
)
+
C=ln(x+x2+a2
)
+
C1,

其中 C 1 = C − ln ⁡ a C_1 = C – \ln a C1=Clna .

例23 ∫ d x x 2 − a 2 ( a > 0 ) \displaystyle \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} (a>0) x2a2
dx
(a>
0)
.
解:可利用公式
sec ⁡ 2 t − 1 = tan ⁡ 2 t \sec^2 t – 1 = \tan^2 t sec2t1=tan2t
来化去根式。注意到被积函数的定义域是 x > a x > a x>a x < − a x < -a x<a 两个区间,我们在两个区间内分别求不定积分。

x > a x > a x>a 时,设 x = a sec ⁡ t ( 0 < t < π 2 ) x = a\sec t \left( 0 < t < \cfrac{\pi}{2} \right) x=asect(0<t<2π),则
x 2 − a 2 = a 2 sec ⁡ 2 t − a 2 = a sec ⁡ 2 t − 1 = a tan ⁡ t , d x = a sec ⁡ t tan ⁡ t d t , \sqrt{x^2 – a^2} = \sqrt{a^2 \sec^2 t – a^2} = a \sqrt{\sec^2 t – 1} = a\tan t, \\ \mathrm{d}x = a \sec t \tan t \mathrm{d}t, x2a2
=
a2sec2ta2
=
asec2t1
=
atant,dx=asecttantdt,

于是
∫ d x x 2 − a 2 = ∫ a sec ⁡ t tan ⁡ t a tan ⁡ t d t = ∫ sec ⁡ t d t = ln ⁡ ( sec ⁡ t + tan ⁡ t ) + C . \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} = \int \cfrac{a \sec t \tan t}{a \tan t} \mathrm{d}t = \int \sec t \mathrm{d}t = \ln{(\sec t + \tan t)} + C. x2a2
dx
=
atantasecttantdt=sectdt=ln(sect+tant)+C.

根据 sec ⁡ t = x a \sec t = \cfrac{x}{a} sect=ax 作辅助三角形得
tan ⁡ t = x 2 − a 2 a \tan t = \cfrac{\sqrt{x^2 – a^2}}{a} tant=ax2a2

因此
∫ d x x 2 − a 2 = ln ⁡ ( x a + x 2 − a 2 a ) + C = ln ⁡ ( x + x 2 − a 2 ) + C 1 \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} = \ln{\left( \cfrac{x}{a} + \cfrac{\sqrt{x^2 – a^2}}{a} \right)} + C = \ln{(x + \sqrt{x^2 – a^2})} + C_1 x2a2
dx
=
ln(ax+ax2a2
)
+
C=ln(x+x2a2
)
+
C1

其中 C 1 = C − ln ⁡ a C_1 = C – \ln a C1=Clna .

x < − a x < -a x<a 时,令 x = − u x = -u x=u,那么 u > a u > a u>a,由上段结果,有
∫ d x x 2 − a 2 = − ∫ d u u 2 − a 2 = − ln ⁡ ( u + u 2 − a 2 ) + C = − ln ⁡ ( − x + x 2 − a 2 ) + C = ln ⁡ − x − x 2 − a 2 a 2 + C = ln ⁡ ( − x − x 2 − a 2 ) + C 1 \begin{align*} \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} &= – \int \cfrac{\mathrm{d}u}{\sqrt{u^2 – a^2}} = – \ln{(u + \sqrt{u^2 – a^2})} + C \\ &= – \ln{(-x + \sqrt{x^2 – a^2})} + C = \ln{\cfrac{-x – \sqrt{x^2 – a^2}}{a^2}} + C \\ &=\ln{(-x – \sqrt{x^2 – a^2})} + C_1 \end{align*} x2a2
dx
=u2a2
du
=ln(u+u2a2
)
+C
=ln(x+x2a2
)
+C=lna2xx2a2
+C
=ln(xx2a2
)
+C1

其中 C 1 = C − 2 ln ⁡ a C_1 = C – 2 \ln a C1=C2lna.
x > a x > a x>a x < − a x < -a x<a 内的结果合起来,得,
∫ d x x 2 − a 2 = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \int \cfrac{\mathrm{d}x}{\sqrt{x^2 – a^2}} = \ln{|x + \sqrt{x^2 – a^2}|} + C x2a2
dx
=
lnx+x2a2
+
C

从上述三个例子可知:

  1. 如果被积函数含有 a 2 − x 2 \sqrt{a^2 – x^2} a2x2
    ,可以作代换 x = a sin ⁡ t x = a \sin t x=asint 化去根式;
  2. 如果被积函数含有 x 2 + a 2 \sqrt{x^2 + a^2} x2+a2
    ,可以作代换 x = a tan ⁡ t x = a \tan t x=atant 化去根式;
  3. 如果被积函数含有 x 2 − a 2 \sqrt{x^2 – a^2} x2a2
    ,可以作代换 x = ± a sec ⁡ t x = \pm a \sec t x=±asect 化去根式.

可以利用另一种代换——倒代换 消去被积函数的分母中的变量因子 x x x

例24 求 ∫ a 2 − x 2 x 4 d x ( a ≠ 0 ) \displaystyle \int \cfrac{\sqrt{a^2 – x^2}}{x^4} \mathrm{d}x (a \neq 0) x4a2x2
dx(a=
0)
.
解:设 x = 1 t x = \cfrac{1}{t} x=t1 ,则 d x = − d t t 2 \mathrm{d}x = – \cfrac{\mathrm{d}t}{t^2} dx=t2dt,于是
∫ a 2 − x 2 x 4 d x = ∫ a 2 − 1 t 2 ⋅ ( − d t t 2 ) 1 t 4 = − ∫ ( a 2 t 2 − 1 ) 1 2 ∣ t ∣ d t , \int \cfrac{\sqrt{a^2 – x^2}}{x^4} \mathrm{d}x = \int \cfrac{\sqrt{a^2 – \cfrac{1}{t^2}} \cdot \left( – \cfrac{\mathrm{d}t}{t^2} \right)}{\cfrac{1}{t^4}} = – \int (a^2 t^2 – 1)^{\frac{1}{2}} |t| \mathrm{d}t, x4a2x2
dx=
t41a2t21
(t2dt)
=
(a2t21)21tdt,

x > 0 x > 0 x>0 时,有
∫ a 2 − x 2 x 4 d x = − 1 2 a ∫ ( a 2 t 2 − 1 ) 1 2 d ( a 2 t 2 − 1 ) = − ( a 2 t 2 − 1 ) 3 2 3 a 2 + C = − ( a 2 − x 2 ) 3 2 3 a 2 x 3 + C \begin{align*} \int \cfrac{\sqrt{a^2 – x^2}}{x^4} \mathrm{d}x &= – \cfrac{1}{2a} \int (a^2 t^2 – 1)^{\frac{1}{2}}\mathrm{d}(a^2 t^2 – 1) \\ &= – \cfrac{(a^2 t^2 – 1)^{\frac{3}{2}}}{3 a^2} + C \\ &= – \cfrac{(a^2 – x^2)^{\frac{3}{2}}}{3 a^2 x^3} + C \end{align*} x4a2x2
dx
=2a1(a2t21)21d(a2t21)=3a2(a2t21)23+C=3a2x3(a2x2)23+C

例27 求 ∫ x 3 ( x 2 − 2 x + 2 ) 2 d x \displaystyle \int \cfrac{x^3}{(x^2 – 2x + 2)^2} \mathrm{d}x (x22x+2)2x3dx .
解:分母是二次质因式的平方,把二次质因式配方成 ( x − 1 ) 2 + 1 (x – 1)^2 + 1 (x1)2+1 ,令 x − 1 = tan ⁡ t ( − π 2 < t < π 2 ) x – 1 = \tan t \left( – \cfrac{\pi}{2} < t < \cfrac{\pi}{2} \right) x1=tant(2π<t<2π) ,则
x 2 − 2 x + 2 = sec ⁡ 2 t , d x = sec ⁡ 2 t d t . x^2 – 2x + 2 = \sec^2 t, \quad \mathrm{d}x = \sec^2 t \mathrm{d}t . x22x+2=sec2t,dx=sec2tdt.
于是
∫ x 3 ( x 2 − 2 x + 2 ) 2 d x = ∫ ( tan ⁡ t + 1 ) 3 sec ⁡ 4 t ⋅ sec ⁡ 2 t d t = ∫ ( sin ⁡ 3 t cos ⁡ − 1 t + 3 sin ⁡ 2 t + 3 sin ⁡ t cos ⁡ t + cos ⁡ 2 t ) d t = ∫ ( sin ⁡ 2 t cos ⁡ − 1 t + 3 cos ⁡ t ) sin ⁡ t d t + ∫ ( 3 sin ⁡ 2 t + cos ⁡ 2 t ) d t = ∫ [ ( 1 − cos ⁡ 2 t ) cos ⁡ − 1 t + 3 cos ⁡ t ] [ − d ( cos ⁡ t ) ] + ∫ ( 2 − cos ⁡ 2 t ) d t = − ∫ ( cos ⁡ − 1 t + 2 cos ⁡ t ) d ( cos ⁡ t ) + 2 t − 1 2 sin ⁡ 2 t = − ln ⁡ cos ⁡ t − cos ⁡ 2 t + 2 t − sin ⁡ t cos ⁡ t + C , \begin{align*} \int \cfrac{x^3}{(x^2 – 2x + 2)^2} \mathrm{d}x &= \int \cfrac{(\tan t + 1)^3}{\sec^4 t} \cdot \sec^2 t \mathrm{d}t \\ &= \int (\sin^3 t \cos^{-1}t + 3\sin^2 t + 3\sin t \cos t + \cos^2 t) \mathrm{d}t \\ &= \int (\sin^2 t \cos^{-1}t + 3 \cos t) \sin t \mathrm{d}t + \int (3\sin^2 t + \cos^2 t) \mathrm{d}t \\ &= \int [(1 – \cos^2 t) \cos^{-1}t + 3 \cos t][- \mathrm{d}(\cos t)] + \int (2 – \cos 2t) \mathrm{d}t \\ &= – \int (\cos^{-1} t + 2\cos t) \mathrm{d}(\cos t) + 2t – \cfrac{1}{2} \sin 2t \\ &= -\ln{\cos t} – \cos^2 t + 2t – \sin t \cos t + C, \end{align*} (x22x+2)2x3dx=sec4t(tant+1)3sec2tdt=(sin3tcos1t+3sin2t+3sintcost+cos2t)dt=(sin2tcos1t+3cost)sintdt+(3sin2t+cos2t)dt=[(1cos2t)cos1t+3cost][d(cost)]+(2cos2t)dt=(cos1t+2cost)d(cost)+2t21sin2t=lncostcos2t+2tsintcost+C,
tan ⁡ t = x − 1 \tan t = x – 1 tant=x1 作辅助三角形,便有
cos ⁡ t = 1 x 2 − 2 x + 2 , sin ⁡ t = x − 1 x 2 − 2 x + 2 , \cos t = \cfrac{1}{\sqrt{x^2 – 2x + 2}}, \quad \sin t = \cfrac{x – 1}{\sqrt{x^2 – 2x + 2}}, cost=x22x+2
1
,sint=
x22x+2
x1
,

于是
∫ x 3 ( x 2 − 2 x + 2 ) 2 d x = 1 2 ln ⁡ ( x 2 − 2 x + 2 ) + 2 arctan ⁡ ( x − 1 ) − x x 2 − 2 x + 2 + C . \int \cfrac{x^3}{(x^2 – 2x + 2)^2} \mathrm{d}x = \cfrac{1}{2} \ln{(x^2 – 2x + 2)} + 2 \arctan{(x – 1)} – \cfrac{x}{x^2 – 2x + 2} + C. (x22x+2)2x3dx=21ln(x22x+2)+2arctan(x1)x22x+2x+C.

原文链接:高等数学 4.2 换元积分法(二)第二类换元法

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/143807.html

(0)
上一篇 2025-04-30 22:20
下一篇 2025-04-30 22:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信