语音信号处理 —— 笔记(一)音频信号处理

语音信号处理 —— 笔记(一)音频信号处理基频 共振峰 采样率 采样定理短时傅里叶变换 分帧加窗 梅尔频谱 Fbank MFCC 特征 频谱图 通过对时域信号进行分帧 加窗 傅立叶变换 取对数得到的语谱图特征

大家好,欢迎来到IT知识分享网。

  声音的产生 :能量通过声带使其振动产生一股基声音,这个基声音通过声道 ,与声道发生相互作用产生共振声音,基声音与共振声音一起传播出去。


一、音频信号简介

1.声音波形图

传感器以某种频率探测声音的振幅强度以及振动方向,所得到的一系列随时间变化的点。

2.采样频率

传感器的探测频率,即为采样频率。根据采样定理得到采样频率。

采样定理(Nyquist-Shannon定理)

定义:用来描述给定带宽的最高传输速率。

整数周期(eg.物体旋转后回到原状所需的时间),采样周期为整数倍的整数周期时不能检测到相位的变化。

*若为轮子转动问题:若需要同时看到旋转方向和相位变化,采样周期要小于整数周期的1/2,采样频率应大于原始频率的2倍。

➡️➡️对于模拟信号:要同时看到信号的全部特性,采样频率应大于原始模拟信号的最大频率的2倍,否则会出现混叠现象。

混叠现象

指利用 离散傅里叶变换 (DFT)对信号Z域进行频域抽样时,取样点数小于时域列长所引起的时域周期延拓序列互相交的现象。

3.语谱图

 分为窄带语谱图和宽带语谱图

窄带:接入速度慢,传输速率低

宽带:传输模拟信号,将信道分成多个子信道,分别传送音频、视频和数字信号,称为宽带传输。

带宽:电磁波频带的宽度,也就是信号的最高频率与最低频率的差值

时宽:脉冲宽度,是信号的结束时间减去信号的开始时间

时窗:时间间隔(time interval)

窄带语谱图

  • 带宽小,时宽大,短时窗长度长。窄带语谱图即为长窗条件下画出的语谱图。
  • 表现为“横线”,“横”体现了频率分辨率高

宽带语谱图

  • 带宽大,时宽窄,短时窗长度短。
  • 表现为“竖线”,可以区分语音在时间上重复的部分,“竖”体现了时间分辨率高

4.基频(基音频率)

  • 声带每次张开闭合的频率,声带振动周期就是基音周期。
  • 在窄带语谱图上,是所有横条纹中频率范围最低的那条,与其在同一水平线上的条纹都表示该时刻的基音频率成分。此条纹对应的纵轴刻度值就是基音频率数值。
  • 其他横条纹是各次谐波
  • 在宽带语谱图上,两竖线之间的时间表示基音周期

5.共振峰

  • 谐波中有些地方比同时刻其附近其他横条纹颜色要深,这些颜色深的表示共振峰

二、语音信号处理

目标:找出各个频率成分的分布

傅里叶变换(FFT)操作 && 小波变换 && 全卷积时域音频分离网络——Conv-TasNet

语音信号处理操作 

语音信号处理 —— 笔记(一)音频信号处理

1.傅里叶级数

猜测任意周期函数可以写成三角函数之和。

欧拉公式

定义:对于θ∈R,有e^{i\theta }=cos\theta +isin\theta

虚数 i:i*i=-1

数轴上 1*(-1) [即1*i*i],线段在数轴上绕原点旋转了180°

1*i时,线段在平面上旋转90°,即得到虚数轴(复平面)。

语音信号处理 —— 笔记(一)音频信号处理

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换   

e^{i\theta }是复平面上的一个夹角为\theta的向量

语音信号处理 —— 笔记(一)音频信号处理

在时间轴t上,记录e^{it }向量虚部(纵坐标)的值,即为sin(t)

在时间轴t上,记录e^{it}向量实部(横坐标)的值,即为cos(t)

e^{i\omega t} \Leftarrow \Rightarrow\left\{\begin{matrix} sin(\omega t)\\ cos(\omega t)\end{matrix}\right.

 两种角度,一个可以观察到旋转的频率,所以称为频域;一个可以看到流逝的时间,所以称为时域。

f(x)=C+\sum_{n=1}^{\infty }(a_{n}cos(\frac{2\pi n}{T})x+b_{n}sin(\frac{2\pi n}{T})x),C\in R

f(x)的基(最基本单元)为:  \begin{Bmatrix} 1 ,cos(\frac{2\pi n}{T}x) ,sin(\frac{2\pi n}{T}x) \end{Bmatrix}

经过点积得到:

f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty }(a_{n}cos(\frac{2\pi n}{T})x+b_{n}sin(\frac{2\pi n}{T})x),C\in R

a_{n}=\frac{2}{T}\int \int_{x_{0}}^{x_{0}+T}f(x)\cdot cos(\frac{2\pi nx}{T})dx,n\in \begin{Bmatrix} 0 \end{Bmatrix}\bigcup N

b_{n}=\frac{2}{T}\int \int_{x_{0}}^{x_{0}+T}f(x)\cdot sin(\frac{2\pi nx}{T})dx,n\in N

频谱时谱

  • 任何波形都可以通过无数个正弦波叠加形成,这些不同频率的正弦波称为频率分量

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换   

  • 其中第一个频率最低的频率分量为构建频域的基(最基本单元)[类比于有理数轴的基本单元“1”],周期无限长的正弦波cos(0t),即一条直线 [即为有理数轴的“0”]
  • 正弦波是一个圆周运动在一条直线上的投影。

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换

  • 在频域中,0频率被称为直流分量。在傅里叶级数的叠加中,只影响全部波形相对于数轴整体向上还是向下,不改变波的形状
  • 延时间方向的图叫时域图像[时谱](正弦波叠加最终形成的图案)
  • 延频率方向的图叫频域图像[频谱/振幅谱](所有叠加正弦波的振幅的竖线组成的)

语音信号处理 —— 笔记(一)音频信号处理

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换   

#导包 import numpy as np from scipy.io import wavfile from scipy.fftpack import dct import matplotlib.pyplot as plt #绘制时域图 def plot_time(sig, fs): time = np.arange(0,len(sig))*(1.0/fs) plt.figure(figsize = (20, 5)) plt.plot(time, sig) plt.xlabel('Time(s)') plt.ylabel('Amplitude')#振幅 plt.grid() #绘制频域图 def plot_freq(sig, sample_rate, n_fft=512): freqs = np.linspace(0, sample_rate/2, n_fft//2 + 1) xf = np.fft.rfft(sig, n_fft) / n_fft xfp = 20*np.log10(np.clip(np.abs(xf), le-20, le100))#强度 plt.figure(figsize = (20, 5)) plt.plot(freqs, xfp) plt.xlabel('Freq(hz)') plt.ylabel('dB')#强度 plt.grid() #绘制二维数组 def plot_spectrogram(spec,ylabel = 'ylabel'): fig = plt.figure(figsize = (20, 5)) heatmap = plt.pcolor(spec) fig.colorbar(mappable = heatmap) plt.xlabel('Time(s)') plt.ylabel(ylabel) plt.tight_layout() plt.show() wav_file = '文件名.wav' fs, sig = wavfile.read(wav_file) #fs是wav文件的采样率,signal是wav文件的内容,filename是要读取的音频文件的路径 sig = sig[0: int(10 *fs)] #保留前10s的数据 plot_time(sig, fs) #时域图 plot_freq(sig, fs) #频域图 

语音信号处理 —— 笔记(一)音频信号处理

 时域图 源 博客园 yifanhunter

语音信号处理 —— 笔记(一)音频信号处理

 频域图 源 博客园 yifanhunter

预加重

定义:对语音的高频部分进行加重

目的:

  • 平衡频谱,高频通常与低频相比具有较小的幅度,提高高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的噪声比(SNR)求频谱
  • 突出高频的共振峰

将语音信号通过一个高通滤波器:

y(t)=x(t)-\alpha x(t-1)       

(其中滤波器系数\alpha值通常为0.95或0.97

# 代码形式 pre_emphasis = 0.97 emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1]) # emphasized_signal为新signal

效果

语音信号处理 —— 笔记(一)音频信号处理

 时域图 源 博客园 yifanhunter

语音信号处理 —— 笔记(一)音频信号处理

频域图 源 博客园 yifanhunter 

滤波

从某条曲线中去除一些特定的频率成分

2.傅里叶变换(Fourier Tranformation)

基本思想:非周期性的信号可以由多个周期性的信号叠加而逼近得到。将无限长的三角函数作为基函数

傅里叶变换:将一个时域非周期的连续信号转换成一个在频域非周期的连续信号(将频域的点连接起来的图像)得到频谱和时谱

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换   

离散谱频域:

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换   

连续谱频域:

语音信号处理 —— 笔记(一)音频信号处理

图源:博客园 – 韩昊 – 深入浅出的讲解傅里叶变换   

分帧

解释:将语音信号截取成小段,即为分帧,每一段信号就叫做一「帧」

  • 即将整个时域过程分解为无数个等长的小过程,每个小过程近似平稳(短时间内的信号可以看作是平稳的,可以截取出来做FFT

语音信号处理 —— 笔记(一)音频信号处理

 图源:知乎 王赟 Maigo

 语音信号处理 —— 笔记(一)音频信号处理

 图源:知乎 王赟 Maigo 

帧移:STRIDE,0~1/2帧长,帧与帧之间的平滑长度

def framing(frame_len_s, frame_shift_s, fs, sig): """ 分帧,主要是计算对应下标 param frame_len_s: 帧长,s param frame_shift_s: 帧移,s param fs: 采样率,hz param sig: 信号 return: 二维list,一个元素为一帧信号 """ sig_n = len(sig) frame_len_n, frame_shift_n = int(round(fs * frame_len_s)), int(round(fs * frame_shift_s)) num_frame = int(np.ceil(float(sig_n - frame_len_n) / frame_shift_n) + 1) pad_num = frame_shift_n * (num_frame - 1) + frame_len_n - sig_n # 待补0的个数 pad_zero = np.zeros(int(pad_num)) # 补0 pad_sig = np.append(sig, pad_zero) # 计算下标 # 每个帧的内部下标 frame_inner_index = np.arange(0, frame_len_n) # 分帧后的信号每个帧的起始下标 frame_index = np.arange(0, num_frame) * frame_shift_n # 复制每个帧的内部下标,信号有多少帧,就复制多少个,在行方向上进行复制 frame_inner_index_extend = np.tile(frame_inner_index, (num_frame, 1)) # 各帧起始下标扩展维度,便于后续相加 frame_index_extend = np.expand_dims(frame_index, 1) # 分帧后各帧的下标,二维数组,一个元素为一帧的下标 each_frame_index = frame_inner_index_extend + frame_index_extend each_frame_index = each_frame_index.astype(np.int, copy=False) frame_sig = pad_sig[each_frame_index] return frame_sig frame_len_s = 0.025 frame_shift_s = 0.01 frame_sig = framing(frame_len_s, frame_shift_s, fs, sig)

 

短时傅里叶变换 (STFT)

在分帧后,要进行加窗 操作,即与一个「窗函数」相乘

  • 加窗的目的:让一帧信号幅度在两端渐变到0(即为下图图3的样子, 可以让频谱上的峰更细,减轻频谱泄漏
  • 加窗后一帧信号的两端部分就被削弱了
    • 通过帧之间相互重叠的方式弥补,相邻两帧起始位置的时间差叫帧移(常见取法:取帧长的一半,或固定为取10毫秒

语音信号处理 —— 笔记(一)音频信号处理

图源:知乎 王赟 Maigo  

确定窗函数的宽度:

  • 窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差,但时间分辨率高
  • 窗太宽,时域上又不够精细,时间分辨率低,但频率分辨率高

对于时变的非稳态信号,高频适合小窗口,低频适合大窗口

语音信号处理 —— 笔记(一)音频信号处理

语音信号处理 —— 笔记(一)音频信号处理

 图源:极市平台

对每一帧的信号做FFT,得到频谱

语音信号处理 —— 笔记(一)音频信号处理

 图源:知乎 王赟 Maigo  

  • 其中横轴是频率,纵轴是幅度
  •  「精细结构」:是蓝线上的一个个小峰,在横轴上的间距就是基频,体现了语音的音高
    • 峰越稀疏,基频越高,音高越高
  • 「包络」:是连接这些小峰峰顶的平滑曲线(红线),代表发的是哪个音。其上的峰叫共振峰(可以根据共振峰的位置看出发的什么音

算法

  • 对于一个表示为1行,T列的的信号(1,T),通常会设定一组线性增加的频率,然后假定信号由这些频率的三家函数信号叠加而成。
  • FFT计算,是将傅里叶级数变换到复数域,经过计算再变成时域。得到的结果就是每个假定的三角函数信号的一个复数表示,即为a+bj。用librosa库和torchaudio库中代码计算,得到由ai+bi j组成的矩阵。ai bi即为每个信号的矢量表示。
  • 在复数域的几何表示为:

语音信号处理 —— 笔记(一)音频信号处理

  • 得到两个矩阵,幅度谱(语谱图) 和 相位谱 ,
  • 傅里叶变换得到的谱,被称为“线性谱”。

n_fft即为多少个信号点做傅里叶变换

公式:

  1. 某帧做STFT,得到频率组的数量 = n_fft // 2 + 1 (//表示整除
  2. 计算一段信号STFT能得到的帧数:已知分帧的窗长winlength,帧移长度hoplength,信号采样点个数L
    • 时间帧数N = L // hoplength + 1(与窗长无关

eg:假设某信号采样率为16000,取一秒钟,也即采样点数量为16000的信号,做窗长512(512/16000*1000=32毫秒)点,帧移256(16毫秒)的STFT变换,即可得到

16000 // 256  + 1= 63帧。

import torchaudio signal = torch.rand(16000) stft = torch.stft(signal.return_complex=True,n_fft=512,hop_length=256,win_length=512) print(stft,shape)

3.小波变换 

时频分析:各个成分出现的时间、信号频率随时间变化的情况、各个时刻的瞬时频率及其幅值

傅里叶变换缺陷:只能获取一段信号总体上包括哪些频率部分,但无法获知各成分出现的时刻。➡️➡️“对于非平稳的过程,傅里叶变换有局限性” “两个时域有巨大差异的信号的频域可能高度一致” 

小波变换思路:将FFT中的无限长三角函数换成了有限长的会衰减的小波基

语音信号处理 —— 笔记(一)音频信号处理

 图源:极市平台 

两个变量:

  • 尺度a:控制小波函数的伸缩,对应于频率(纵轴
  • 平移量 \tau:控制小波函数的平移,对应于时间(横轴

得到时频谱

对于突变信号:FFT存在吉布斯效应

傅里叶变换:

语音信号处理 —— 笔记(一)音频信号处理

 图源:极市平台 

对小波变换: 

语音信号处理 —— 笔记(一)音频信号处理

 图源:极市平台 

4.声谱图、梅尔频谱

声谱图

对一段长语音信号,分帧、加窗、在对每一帧做傅里叶变换,之后把每一帧的结果沿着另一维度堆叠,得到的图就是声谱图

声谱图得到的过程

图源:CSDN lvziye00lvziye文章

梅尔频谱

将声谱图通过梅尔尺度滤波器(Mel 滤波),变为梅尔频谱,得到合适大小的声音特征

  • 频率的单位是HZ,将HZ转化成梅尔频率,则人耳对频率的感知度变为线性。
  • 公式:

mel(l)=2595*log_{10}(1+\frac{f}{700})

在这里插入图片描述

图源:CSDN lvziye00lvziye文章 

5.Fbank和MFCC

Fbank(FilterBank)

一种前端处理算法,以类似于人耳的方式对音频进行处理,以提高语音识别的性能。

MFCC

对Fbank做离散余弦变换(DCT)即可获得MFCC特征。

MFCC:梅尔频率倒谱系数。实际就是在梅尔频谱上做倒谱分析(取对数,做DCT变换)

参考文章:

本文不做任何商用,仅为自我学习摘录。如有某部分侵犯了大家的利益,还望海涵,并联系删除,谢谢大家!!!

https://www.zhihu.com/question/                –采样定理

https://blog.csdn.net/lzrtutu/article/details/                –语谱图、基频、共振峰

https://www.zhihu.com/question//answer/    –马同学(如何理解FT公式

https://mp.weixin..com/s/CRqhHIlYYRjYJ64PZZnUkQ         –极市平台 傅里叶变换 小波变换

https://www.cnblogs.com/h2zZhou/p/8405717.html        –韩昊 博客园 深入浅出的讲解傅里叶变换

https://www.zhihu.com/question/        –by 知乎 王赟 Maigo 怎样理解分帧

https://blog.csdn.net/lvziye00lvziye/article/details/        –声谱图,梅尔谱图

https://www.cnblogs.com/yifanrensheng/p/13510742.html  –Fbank和MFCC介绍-忆凡人生-博客园

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/144627.html

(0)
上一篇 2025-04-25 15:45
下一篇 2025-04-25 16:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信