【数学】n次方差公式及证明方法

【数学】n次方差公式及证明方法n 次方差公式 an bn a b an 1 an 2b an 3b2 abn 2 bn 1 n N a n b n a b a n 1 a n 2 b a n

大家好,欢迎来到IT知识分享网。

n次方差公式:
a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋅ ⋅ ⋅ + a b n − 2 + b n − 1 ) , n ∈ N ∗ a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+···+ab^{n-2}+b^{n-1}),n \in N^{*} anbn=(ab)(an1+an2b+an3b2++abn2+bn1)nN
证法一:
a n − b n = a n − a n − 1 b + a n − 1 b − a n − 2 b 2 + a n − 2 b 2 − ⋅ ⋅ ⋅ + a b n − 1 − b n = a n − 1 ( a − b ) + a n − 2 b ( a − b ) + ⋅ ⋅ ⋅ + b n − 1 ( a − b ) = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋅ ⋅ ⋅ + a b n − 2 + b n − 1 ) \begin{aligned} a^{n}-b^{n} &= a^{n}-a^{n-1}b+a^{n-1}b-a^{n-2}b^{2}+a^{n-2}b^{2}-···+ab^{n-1}-b^{n} \\ &= a^{n-1}(a-b)+a^{n-2}b(a-b)+···+b^{n-1}(a-b) \\ &= (a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+···+ab^{n-2}+b^{n-1}) \end{aligned} anbn=anan1b+an1ban2b2+an2b2+abn1bn=an1(ab)+an2b(ab)++bn1(ab)=(ab)(an1+an2b+an3b2++abn2+bn1)
证法二:
设等比数列 a n {a_{n}} an 的通项公式为 a n = ( b a ) n a_{n}=(\frac{b}{a})^{n} an=(ab)n ,则其前 n n n 项和为:
b a + ( b a ) 2 + ( b a ) 3 + ⋅ ⋅ ⋅ + ( b a ) n − 1 + ( b a ) n = b a [ 1 − ( b a ) n ] 1 − b a = b [ 1 − ( b a ) n ] a − b = b ( a n − b n ) a n ( a − b ) \begin{aligned} & \frac{b}{a}+(\frac{b}{a})^{2}+(\frac{b}{a})^{3}+···+(\frac{b}{a})^{n-1}+(\frac{b}{a})^{n} \\ & = \frac{\frac{b}{a}[1-(\frac{b}{a})^{n}]}{1-\frac{b}{a}} = \frac{b[1-(\frac{b}{a})^{n}]}{a-b} = \frac{b(a^{n}-b^{n})}{a^{n}(a-b)} \end{aligned} ab+(ab)2+(ab)3++(ab)n1+(ab)n=1abab[1(ab)n]=abb[1(ab)n]=an(ab)b(anbn)
故:
a n − b n = a n ( a − b ) b [ b a + ( b a ) 2 + ( b a ) 3 + ⋅ ⋅ ⋅ + ( b a ) n − 1 + ( b a ) n ] = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋅ ⋅ ⋅ + a b n − 2 + b n − 1 ) \begin{aligned} a^{n}-b^{n} &= \frac{a^{n}(a-b)}{b}[\frac{b}{a}+(\frac{b}{a})^{2}+(\frac{b}{a})^{3}+···+(\frac{b}{a})^{n-1}+(\frac{b}{a})^{n}] \\ &= (a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+···+ab^{n-2}+b^{n-1}) \end{aligned} anbn=ban(ab)[ab+(ab)2+(ab)3++(ab)n1+(ab)n]=(ab)(an1+an2b+an3b2++abn2+bn1)

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/147940.html

(0)
上一篇 2025-04-03 19:45
下一篇 2025-04-03 20:00

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信