大家好,欢迎来到IT知识分享网。
原文地址:http://blog.sina.com.cn/s/blog_4b700c4c0102e1lh.html
集群和负载均衡的概念
集群(Cluster) 所谓集群是指一组独立的计算机系统构成的一个松耦合的多处理器系统,它们之间通过网络实现进程间的通信。应用程序可以通过网络共享内存进行消息传送,实现分布式计算机。 负载均衡(Load Balance) 网络的负载均衡是一种动态均衡技术,通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理均衡地分配出去。这种技术基于现有网络结构,提供了一种扩展服务器带宽和增加服务器吞吐量的廉价有效的方法,加强了网络数据处理能力,提高了网络的灵活性和可用性。 特点 (1)高可靠性(HA)。利用集群管理软件,当主服务器故障时,备份服务器能够自动接管主服务器的工作,并及时切换过去,以实现对用户的不间断服务。 (2)高性能计算(HP)。即充分利用集群中的每一台计算机的资源,实现复杂运算的并行处理,通常用于科学计算领域,比如基因分析、化学分析等。 (3)负载平衡。即把负载压力根据某种算法合理分配到集群中的每一台计算机上,以减轻主服务器的压力,降低对主服务器的硬件和软件要求。 LVS系统结构与特点 1. Linux Virtual Server:简称LVS。是由中国一个Linux程序员章文嵩博士发起和领导的,基于Linux系统的服务器集群解决方案,其实现目标是创建一个具有良好的扩展性、高可靠性、高性能和高可用性的体系。许多商业的集群产品,比如RedHat的Piranha、 Turbo Linux公司的Turbo Cluster等,都是基于LVS的核心代码的。 2. 体系结构:使用LVS架设的服务器集群系统从体系结构上看是透明的,最终用户只感觉到一个虚拟服务器。物理服务器之间可以通过高速的 LAN或分布在各地的WAN相连。最前端是负载均衡器,它负责将各种服务请求分发给后面的物理服务器,让整个集群表现得像一个服务于同一IP地址的虚拟服务器。 3. LVS的三种模式工作原理和优缺点: Linux Virtual Server主要是在负载均衡器上实现的,负载均衡器是一台加了 LVS Patch的2.2.x版内核的Linux系统。LVS Patch可以通过重新编译内核的方法加入内核,也可以当作一个动态的模块插入现在的内核中。 负载均衡器可以运行在以下三种模式下: (1)Virtual Server via NAT(VS-NAT):用地址翻译实现虚拟服务器。地址转换器有能被外界访问到的合法IP地址,它修改来自专有网络的流出包的地址。外界看起来包是来自地址转换器本身,当外界包送到转换器时,它能判断出应该将包送到内部网的哪个节点。优点是节省IP 地址,能对内部进行伪装;缺点是效率低,因为返回给请求方的流量经过转换器。 (2)Virtual Server via IP Tunneling (VS-TUN):用IP隧道技术实现虚拟服务器。这种方式是在集群的节点不在同一个网段时可用的转发机制,是将IP包封装在其他网络流量中的方法。为了安全的考虑,应该使用隧道技术中的VPN,也可使用租用专线。集群所能提供的服务是基于TCP/IP的Web服务、Mail服务、News服务、DNS服务、Proxy服务器等等. (3)Virtual Server via Direct Routing(VS-DR):用直接路由技术实现虚拟服务器。当参与集群的计算机和作为控制管理的计算机在同一个网段时可以用此法,控制管理的计算机接收到请求包时直接送到参与集群的节点。优点是返回给客户的流量不经过控制主机,速度快开销少。 以四台服务器为例实现负载均衡: 安装配置LVS 1. 安装前准备: (1)首先说明,LVS并不要求集群中的服务器规格划一,相反,可以根据服务器的不同配置和负载状况,调整负载分配策略,充分利用集群环境中的每一台服务器。如下表: Srv Eth0 Eth0:0 Eth1 Eth1:0 vs1 10.0.0.1 10.0.0.2 192.168.10.1 192.168.10.254 vsbak 10.0.0.3 192.168.10.102 real1 192.168.10.100 real2 192.168.10.101 其中,10.0.0.2是允许用户访问的IP。 (2)这4台服务器中,vs1作为虚拟服务器(即负载平衡服务器),负责将用户的访问请求转发到集群内部的real1,real2,然后由real1,real2分别处理。 Client为客户端测试机器,可以为任意操作系统。 (3)所有OS为redhat6.2,其中vs1 和vsbak 的核心是2.2.19, 而且patch过ipvs的包, 所有real server的Subnet mask 都是24位, vs1和vsbak 的10.0.0. 网段是24 位。 2.理解LVS中的相关术语 (1) ipvsadm :ipvsadm是LVS的一个用户界面。在负载均衡器上编译、安装ipvsadm。 (2) 调度算法: LVS的负载均衡器有以下几种调度规则:Round-robin,简称rr;weighted Round-robin,简称wrr;每个新的连接被轮流指派到每个物理服务器。Least-connected,简称lc;weighted Least-connected,简称wlc,每个新的连接被分配到负担最小的服务器。 (3) Persistent client connection,简称pcc,(持续的客户端连接,内核2.2.10版以后才支持)。所有来自同一个IP的客户端将一直连接到同一个物理服务器。超时时间被设置为360秒。Pcc是为https和cookie服务设置的。在这处调度规则下,第一次连接后,所有以后来自相同客户端的连接(包括来自其它端口)将会发送到相同的物理服务器。但这也会带来一个问题,因为大约有25%的Internet 可能具有相同的IP地址。 (4) Persistent port connection调度算法:在内核2.2.12版以后,pcc功能已从一个调度算法(你可以选择不同的调度算法:rr、wrr、lc、wlc、pcc)演变成为了一个开关选项(你可以让rr、 wrr、lc、wlc具备pcc的属性)。在设置时,如果你没有选择调度算法时,ipvsadm将默认为wlc算法。 在Persistent port connection(ppc)算法下,连接的指派是基于端口的,例如,来自相同终端的80端口与443端口的请求,将被分配到不同的物理服务器上。不幸的是,如果你需要在的网站上采用cookies时将出问题,因为http是使用80端口,然而cookies需要使用443端口,这种方法下,很可能会出现cookies不正常的情况。 (5)Load Node Feature of Linux Director:让Load balancer 也可以处理users 请求。 (6)IPVS connection synchronization。 (7)ARP Problem of LVS/TUN and LVS/DR:这个问题只在LVS/DR,LVS/TUN 时存在。 3. 配置实例 (1) 需要的软件包和包的安装: I. piranha-gui-0.4.12-2*.rpm (GUI接口cluster设定工具); II. piranha-0.4.12-2*.rpm; III. ipchains-1.3.9-6lp*.rpm (架设NAT)。 取得套件或mount到光盘,进入RPMS目录进行安装: # rpm -Uvh piranha* # rpm -Uvh ipchains* (2) real server群: 真正提供服务的server(如web server),在NAT形式下是以内部虚拟网域的形式,设定如同一般虚拟网域中Client端使用网域:192.168.10.0/24 架设方式同一般使用虚拟IP之局域网络。 a. 设网卡IP real1 :192.168.10.100/24 real2 :192.168.10.101/24 b.每台server均将default gateway指向192.168.10.254。 192.168.10.254为该网域唯一对外之信道,设定在virtual server上,使该网域进出均需通过virtual server 。 c.每台server均开启httpd功能供web server服务,可以在各real server上放置不同内容之网页,可由浏览器观察其对各real server读取网页的情形。 d.每台server都开启rstatd、sshd、rwalld、ruser、rsh、rsync,并且从Vserver上面拿到相同的lvs.conf文件。 (3) virtual server: 作用在导引封包的对外主机,专职负责封包的转送,不提供服务,但因为在NAT型式下必须对进出封包进行改写,所以负担亦重。 a.IP设置: 对外eth0:IP:10.0.0.1 eth0:0 :10.0.0.2 对内eth1:192.168.10.1 eth1:0 :192.168.10.254 NAT形式下仅virtual server有真实IP,real server群则为透过virtual server. b.设定NAT功能 # echo 1 >; /proc/sys/net/ipv4/ip_forward # echo 1 >; /proc/sys/net/ipv4/ip_always_defrag # ipchains -P forward MASQ c.设定piranha 进入X-window中 (也可以直接编辑/etc/lvs.cf ) a).执行面板系统piranha b).设定“整体配置”(Global Settings) 主LVS服务器主机IP:10.0.0.2, 选定网络地址翻译(预设) NAT路径名称: 192.168.10.254, NAT 路径装置: eth1:0 c).设定虚拟服务器(Virtual Servers) 添加编辑虚拟服务器部分:(Virtual Server)名称:(任意取名);应用:http;协议: tcp;连接:80;地址:10.0……0.2;装置:eth0:0;重入时间:180 (预设);服务延时:10 (预设);加载监控工具:ruptime (预设);调度策略:Weighted least-connections; 持续性:0 (预设); 持续性屏蔽: 255.255.255.255 (预设);按下激活:实时服务器部分:(Real Servers);添加编辑:名字:(任意取名); 地址: 192.168.10.100;权重:1 (预设) 按下激活 另一架real server同上,地址:192.168.10.101。 d). 控制/监控(Controls/Monitoring) 控制:piranha功能的激活与停止,上述内容设定完成后即可按开始键激活piranha.监控器:显示ipvsadm设定之routing table内容 可立即更新或定时更新。 (4)备援主机的设定(HA) 单一virtual server的cluster架构virtual server 负担较大,提供另一主机担任备援,可避免virtual server的故障而使对外服务工作终止;备份主机随时处于预备状态与virtual server相互侦测 a.备份主机: eth0: IP 10.0.0.3 eth1: IP 192.168.10.102 同样需安装piranha,ipvsadm,ipchains等套件 b.开启NAT功能(同上面所述)。 c.在virtual server(10.0.0.2)主机上设定。 a).执行piranha冗余度 ; b).按下“激活冗余度”; 冗余LVS服务器IP: 10.0.0.3;HEARTBEAT间隔(秒数): 2 (预设) 假定在…秒后进入DEAD状态: 5 (预设); HEARTBEAT连接埠: 539 (预设) c).按下“套用”; d).至“控制/监控”页,按下“在当前执行层添加PULSE DEAMON” ,按下“开始”; e).在监控器按下“自动更新”,这样可由窗口中看到ipvsadm所设定的routing table,并且动态显示real server联机情形,若real server故障,该主机亦会从监视窗口中消失。 d.激活备份主机之pulse daemon (执行# /etc/rc.d/init.d/pulse start)。 至此,HA功能已经激活,备份主机及virtual server由pulse daemon定时相互探询,一但virtual server故障,备份主机立刻激活代替;至virtual server 正常上线后随即将工作交还virtual server。 LVS测试 经过了上面的配置步骤,现在可以测试LVS了,步骤如下: 1. 分别在vs1,real1,real2上运行/etc/lvs/rc.lvs_dr。注意,real1,real2上面的/etc/lvs 目录是vs2输出的。如果您的NFS配置没有成功,也可以把vs1上/etc/lvs/rc.lvs_dr复制到real1,real2上,然后分别运行。确保real1,real2上面的apache已经启动并且允许telnet。 2. 测试Telnet:从client运行telnet 10.0.0.2,如果登录后看到如下输出就说明集群已经开始工作了:(假设以guest用户身份登录) [guest@real1 guest]$——说明已经登录到服务器real1上。 再开启一个telnet窗口,登录后会发现系统提示变为: [guest@real2 guest]$——说明已经登录到服务器real2上。 3. 测试http:从client运行iexplore [url]http://10.0.0.2[/url] 因为在real1 和real2 上面的测试页不同,所以登录几次之后,显示出的页面也会有所不同,这样说明real server 已经在正常工作了。
负载平衡机制简介
在计算机硬件价格下降、计算机网络拓扑发展的情况下,分布式计算机系统给用户提供了一个丰富的资源集合。人们在研究分布式系统时,就注意到了这样一个问题:在一个由网络连接起来的多计算机环境中,在某一时刻,一些计算机的负载比较重,而另外一些计算机的负载却比较轻。平衡各计算机之间的负载是任务分配与调度的一个主要目标,它能够提高整个系统的性能。 为了改善系统的性能,通过在多台计算机之间合理地分配负载,使各台计算机的负载基本均衡,这种计算能力共享的形式,通常被称为负载平衡或负载共享。一般来说,”负载平衡”要达到的目标是使各台计算机之间的负载基本均衡,而”负载共享”意味着只是简单的负载的重新分配。 负载平衡包括两种,一种是静态负载平衡,一种是动态负载平衡。只是利用系统负载的平均信息,而忽视系统当前的负载状况的方法被称为静态负载平衡。根据系统当前的负载状况来调整任务划分的方法被称为动态负载平衡。 导致负载不平衡主要是由于:
考察这三个原因,对第一种情况可在编译时估计各迭代的工作量,按照处理节点的处理能力分布迭代,这就是静态负载平衡的方法。对第二、三种情况来说,必须采用动态负载平衡的手段,在运行过程中根据各个处理节点完成任务的情况,动态地迁移任务,实现动态负载平衡。进行动态负载平衡需要考察处理节点的处理能力,它的基本依据是根据处理节点先前的处理速度预见未来的处理速度。 一个负载平衡算法都包含以下三个组成部分:
负载平衡的上述三个部分之间是以不同的方式相互作用的。放置策略利用信息策略提供的负载信息,仅当任务被传送策略判断为适于传送之后才行动。总之,负载平衡的目标是:提供最短的平均任务响应时间;能适于变化的负载;是可靠的负载平衡机制。
人们用来描述负载信息采用的参数有:
为了简单起见,在选用传送策略时,多选用阀值策略。例如,Eager等人的方法是:在判断是否要在本地处理一个任务时,无需交换计算机之间的状态信息,一旦服务队列或等待服务队列的长度大于阀值时,就传送这个任务,而且传送的是刚刚接收的任务。而进程迁移能够迁移正在执行的任务,是对这种只能传送刚刚接收的任务的一种改进。 Zhou在模拟研究七个负载平衡算法时,其传送策略都采用阀值策略。它的阀值策略基于两个阀值∶计算机的负载阀值Load和任务执行时间阀值TCPU。如果计算机的负载超过Load并且任务的执行时间超过TCPU时,就把此任务传送到其它计算机执行。
经过总结,共有以下四种放置策略。
Zhou的论文中,比较了(2)和(3)三种策略,结论是:以简单(计算不昂贵)的方式,利用少量状态信息,第(2)中方法往往获得比第(3)种方法更好的效果。第(3)中方法比较复杂,它必须用性能的改善来补偿额外花费,所以取得的效果会稍差一些[2]。 目前,常见的算法有:中心任务调度策略、梯度模型策略、发送者启动策略和接收者启动策略。
随着网络硬件设备的飞速进步,网络带宽的瓶颈效应日趋减弱,WEB服务器的性能问题逐渐显现出来。单一的服务器系统处理客户请求的能力有限,如何处理快速增长的客户请求,是当前研究人员关注的重要问题。从目前的研究方向看,服务器方向的研究可以归结为两个方面:
就某一商业Web站点而言,人们通常会认为,日访问人数越多,说明销售的潜力越大,潜在的购买者越多。但统计结果向我们显示的却是另一种结果。随着日访问人数的增加,销售量上升到一定程度后,反而下降。图1给出的是某汽车销售网站网上销售的模拟计算结果。注意,当网站日查询业务量为正常的120%或更高时,访问的服务时间明显增长,使得日收益反而比正常情况下降很多。
究其原因,我们不难发现,服务器的性能是导致这种现象的最根本的原因。当服务器负载接近边界时,负载的一个小小的增长都有可能使服务器陷入象死锁那样的一种境地。由此可以得出,如何优化Web服务器性能将是今后一段时间研究的一个热点。许多服务器制造商都在努力推出性能更加优良的服务器,但是单一服务器结构有一个致命的缺陷,那就是由于服务器的处理能力有限,有可能会出现死锁的情况。死锁的产生是由于新请求的到达率大于系统服务率,系统没有能力在短期内处理所有的请求,导致等待队列溢出,系统稳定状态转为不稳定状态,最后崩溃。集群服务器具有良好的可扩展性,可以随着负载的增大动态地向集群中增加服务器,从而就避免了由于处理能力不足而导致的系统崩溃。 在集群系统中,粒度指的是负载调度和迁移的单位。集群系统中的粗粒度指的是调度和迁移的单位是服务,而细粒度指的是进程。目前,关于集群式服务器的研究主要集中在体系结构和负载平衡策略的研究上,其中负载平衡策略的研究又是体系结构研究的基础。早期的集群式服务器系统常采用Round-Robin DNS算法实现客户请求的分发。实际上是一种粗粒度的负载分配策略。 正常情况下,域名服务器将主机名映射为一个IP地址,为了改善负载平衡状况,早期的集群服务器系统采用RR-DNS(Round-Robin DNS)调度算法将一个域名映射为一组IP地址,允许客户端链接到服务器集群中的某一台服务器上,由此提供了服务器站点的伸缩性。一些可伸缩Web服务器(例如Eddie和NCSA的Scalable Web Server)采用RR-DNS实现负载平衡,一些高吞吐率的站点(Yahoo)也继续采用这种简单应用。图2为这类服务器结构的工作原理图。 RR-DNS在解析域名时,附加一个生存期(TTL:Time-To-Live),这样一个请求生成后TTL时间内没有获得应答信息,可以向RR-DNS获取不同的IP地址。
在一个TTL时期内,多个域名请求将被映射到相同的IP地址,这样大量的客户端请求可能出现在同一服务器上,导致明显的负载失衡。如果TTL很小,又会明显增加域名解析的网络负载。 另一个相关问题是由于客户端缓存域名-IP地址解析结果,客户端可以在未来的任意时刻发送请求,导致服务器的负载无法得到控制,出现服务器负载失衡。 为解决请求的负载分布均衡问题,研究者对RR-DNS算法进行了多种改进,这些改进依据TTL的设定形式可分为TTL恒定算法和自适应TTL算法。 TTL恒定算法 TTL恒定算法根据用户使用系统状态信息的情况又可分为系统无状态算法、基于服务器状态算法、基于客户状态算法和基于服务器/客户状态算法。
自适应TTL算法[20] 为平衡多服务器节点的负载,特别是异构服务器的负载,人们提出了自适应的TTL算法。这类算法使用基于服务器/客户状态DNS策略选择节点服务器,并动态调整TTL值。在异构服务器集群中,根据各服务器容量不同,设置的TTL值也不完全相同,由此控制因负载不对称造成的超载问题。 自适应TTL算法使用两步表决机制:首先DNS选择服务器的方法和基于客户状态算法相似;第二步,DNS根据负载分布情况、服务器处理能力和服务器的繁忙程度选择合适的TTL值,服务器越忙,设定的TTL值越小。 另外,自适应TTL算法的可扩展性很强,算法实现中的数据都可以动态获得。使用自适应TTL算法可以使服务器集群比较容易地从局域网拓展到广域网。 由于客户端和中间域名服务器缓存URL-IP地址映射,使用服务器状态信息的DNS算法不能保证负载平衡[15],每个地址缓存都有可能引发大量的客户请求阻塞集群中的某个服务器节点。因此,合理地预测客户请求的到达率对于选择服务器更加有效。 使用客户到达率信息和服务器监听的调度算法可以获得更高可用性的服务器。但是这种算法明显不适于异构型集群服务器。 为平衡分布系统的请求负载,自适应TTL算法是最可靠、有效的。但是,这种算法忽略了客户-服务器距离的重要性。
为实现客户请求的集中调度和完全路由控制,采用细粒度负载分配策略的服务器结构中必须包含一个路由器节点──平衡器(可能是一个硬件路由器或集群服务器中配置专用软件的节点)接收发向Web站点的所有请求,根据某种负载平衡算法将请求转发到不同的服务器节点上。 与基于DNS的体系结构不同的是,平衡器采用单一的、虚拟IP地址IP-SVA(single virtual IP adress),这个IP地址是众所周知的一个IP地址,而节点服务器的实际地址对用户是透明的。由于此机制是在URL层进行请求的处理,Web页中包含的多个目标,可以由集群中的不同节点提供,这样提供了比RR-DNS更细粒度的控制策略。 根据路由机制的不同,细粒度负载分配策略又可分为报文重写(单向重写或双向重写)、报文转发和HTTP重定向。 PDR采用集中调度方式完成客户请求的路由控制,服务器系统的平衡器负责客户请求的接收、分发和结果的返回工作。与RR-DNS策略不同,平衡器在IP层进行地址重写,使用动态地址映射表,实现客户请求的重定向。采用单一的虚拟IP地址(IP-SVA),用户可见的只是平衡器,节点服务器是透明的。在选择节点服务器时采用的调度策略主要有:Round Robin(轮转)、Weighted Round Robin(加权轮转)、Least Connection(最少连接)和Weighted Least Connection(加权最少连接)。平衡器将客户和节点服务器的映射添加到映射表中,这样就保证了同一客户的所有请求都发送到同一台节点服务器上,从而保证了访问的持续性。采用PDR策略的典型代表是Cisco的Local Director,从路由机制上看,Local Director当前采用最少连接数策略。图1-3给出了Local Director处理客户请求的原理图。 工作流程
性能分析 与粗粒度负载平衡策略不同,PDR在IP级进行负载平衡分配,这样就省去了从应用层到IP层的通讯开销,因此有效缩短了服务器处理时间。较DNS机制,性能提高很大。但是这种策略也存在如下问题:
在某些体系结构中,平衡器对接收的客户请求进行二次路由,将客户报文的目的IP地址改写为实际处理节点的IP地址,例如基本的TCP路由机制[15]。 在TCP路由机制中,服务器集群由一组节点服务器和一个TCP路由器组成,TCP路由器充当IP地址平衡器。当客户请求到达TCP路由器时,由于IP-SVA是唯一公开的IP地址,平衡器将请求报文中的目标IP地址重写为节点服务器的私有IP地址。由于一个客户请求可能是由多个报文构成,TCP路由器在地址表中记录客户(具有相同的源IP地址)与执行服务器的地址映射,保证来自同一客户的所有报文都能到达同一台节点服务器。服务器在发送应答报文给客户时,将平衡器的IP-SVA写入源IP地址,这样客户并不知道请求是由隐藏的执行服务器完成。图4给出了服务器使用报文单向重写策略时,客户请求的执行过程。 工作流程:
性能分析 使用报文单向重写机制可以提高系统可用性程度,当平衡器节点出现故障时,路由表可以由原平衡器迁移到新的服务器上,服务器的结构也可以从局域网拓展到广域网。但是这种机制导致服务器结构透明性较差,而且执行服务器和平衡器在判断客户请求是否结束上存在困难。 由于报文重写增加了平衡器处理请求的复杂度,导致平衡器负载加重,研究者提出了报文转发策略(PF)。采用PF策略,平衡器和执行服务器共用一个IP-SVA地址,客户请求报文到达平衡器后,平衡器根据调度选择执行服务器,利用执行服务器的物理地址(MAC)将报文转发给执行节点。转发过程中不需要进行地址解析,所以不必改动客户请求报文。采用PF策略的典型代表是IBM的Network Dispatcher。 局域网内部的Network Dispatcher集群处理客户请求的原理与图5相似,其工作流程如下:
为了将服务器集群从局域网拓展到广域网,Network Dispatcher采用两级平衡器机制,图5显示了广域网服务器集群的原理图。一级平衡器到二级服务器之间采用类似报文单向重写策略,平衡器将客户请求报文的目的地址(IP-SVA)改写为二级平衡器的IP地址,选择二级平衡器的原则是根据客户-服务器间的距离,将客户请求分发到最近的服务器子群上。二级平衡器将客户请求报文的目的地址改回IP-SVA,然后将报文转发到执行服务器上,服务器子群要求必须在同一局域网中。 在广域网环境下,实现客户请求报文处理的流程是:
随着负载数量的增长,相应的处理变得越来越复杂(每个服务器节点每秒处理的请求数量有限),目前路由器只负责接收报文,但链接的复杂性、每个请求的返回数据量都限制了路由器的可伸缩性。 集中式平衡器接收所有客户请求,使用HTTP重定向机制将客户请求分发到不同的执行服务器上。平衡器根据特殊的响应状态码,指明客户请求文件在服务器上的位置,因此重定向机制是高度透明的。与其他分发机制不同的是,HTTP重定向机制不需要对通讯报文的IP地址进行修改,HTTP重定向机制可以由以下两种技术实现。 2.4.1 基于服务器状态分发 在分布式服务器集群体系结构中,修正现有的HTTP协议,增加新方法实现对Web服务器的管理,改变平衡器与执行服务器间的信息交换。由于平衡器需要考虑服务器的负载情况,每个执行服务器必须周期性地报告处理进程数量和客户请求到达率。平衡器选择负载最轻的执行服务器处理新的客户请求。 2.4.2 基于位置的分发 Cisco的Distributed Director提供了两种分发模式,第一种是基于DNS的SCSB策略,第二种为HTTP重定向策略。Distributed Director评估客户-服务器距离和节点可用性,将客户请求重定向到最合适的执行服务器。 基于平衡器的报文双向重写机制的问题是,平衡器必须对应答报文进行重写,而应答报文的数量明显超过请求报文的数量。 使用TCP路由器结构的报文单向重写机制,由于执行服务器处理众多的应答报文,减轻了平衡器的负载。广域网环境下的Network Dispatcher仅对请求报文进行两次重写,因而执行效率更高。 报文转发机制可以有效避免报文重写带来的开销,然而共享单IP地址导致静态调度策略失效(服务器状态不决定路由)。基于路由的平衡器需要对每个报文进行二次路由,基于广播的平衡器需要把报文广播到每个执行服务器,这样明显加重了服务器负载。 局域网环境下的Network Dispatcher结构避免了共享IP地址、TCP路由和双向重写的开销等问题,但是它只能在同一网段内实现,可伸缩性很差。HTTP重定向可以很好地应用于局域网和广域网中,但必须复制一定数量的TCP连接。 基于DNS机构的实现机制可以明显减轻服务器的瓶颈效应,可伸缩能力得到加强,服务器环境从局域网拓展到广域网。但是,使用这种结构,服务器的数量不能超过32台(受UDP报文长度的限制)。基于DNS结构的服务器通过地址映射决定客户请求的目的地址,然而,这种粗粒度负载平衡机制要求TTL必须大于0,由于客户端对服务器地址进行缓存,导致服务器负载平衡不能保证,人们提出了基于状态信息算法和自适应TTL算法对DNS策略的性能进行改进。总的来说,单纯基于DNS策略的服务器适合于小规模的同构型服务器集群,但不适于异构性服务器结构。 基于平衡器结构的服务器由于受到单仲裁入口的限制,客户请求迅速增长可能导致平衡器成为系统瓶颈;由于平衡器对客户请求报文重写或转发,增加了客户等待延迟,降低了服务器性能;另外使用集中调度策略,若平衡器当机,则整个系统都会崩溃。从另一方面讲,平衡器实现的细粒度负载平衡策略,共享服务器IP地址又克服客户端网络层地址缓存问题。基于服务器拓扑结构实现的报文重写和转发策略是目前局域网或高速广域网中集群服务器实现的主要策略。 改进执行服务器处理过程将原有的请求集中控制改为部分分布控制,是服务器结构研究的一种进步,与平衡器结构服务器相同,这种技术也是一种细粒度负载平衡策略,但它带来的客户等待延迟要比其他策略增加很多。 从目前集群式服务器结构研究的现状分析可以看出,今后服务器集群的发展趋势将是面向广域网的分布控制的服务器集群研究。 |
基于Linux的集群系统
实现过程之理论先导篇
许广斌 (xuguangbin@263.net), 工程师
讲述负载平衡策略,并对各种负载平衡策略作了比较。
近年来,Internet的发展步入黄金时期,网上信息交换的数量正在呈指数形式的增长。特别是,由于电子商务的蓬勃发展,人们已经预计在下一世纪,网上消费将成为日常生活的重要形式。
随着网络硬件设备的飞速进步,网络带宽的瓶颈效应日趋减弱,WEB服务器的性能问题逐渐显现出来。单一的服务器系统处理客户请求的能力有限,如何处理快速增长的客户请求,是当前研究人员关注的重要问题。从目前的研究方向看,服务器方向的研究可以归结为两个方面:
- 从实现机制上入手。主要研究Caching技术、预取技术等。这方面的研究主要从客户访问行为分析入手,研究可以缩小响应时间的方法,这些技术可以在现有服务器设备的基础上尽可能地提高系统的性能,但性能提高的程度有限。
- 从体系结构入手。将过去单一的服务器结构扩充为集群式服务器结构。这种改造可能需要增加较大的开销,但可以显著提高服务器的总体性能。
体系结构研究 | 软件技术研究 |
单机服务器 | 协议分析 |
缓存机制Caching | |
预取技术Pre-fetching | |
请求调度 | |
集群服务器 | 节点分发 |
就某一商业Web站点而言,人们通常会认为,日访问人数越多,说明销售的潜力越大,潜在的购买者越多。但统计结果向我们显示的却是另一种结果。随着日访问人数的增加,销售量上升到一定程度后,反而下降。图1给出的是某汽车销售网站网上销售的模拟计算结果。注意,当网站日查询业务量为正常的120%或更高时,访问的服务时间明显增长,使得日收益反而比正常情况下降很多。
|
正常 | 正常+10% | 正常+20% | 正常+30% |
日查询业务量 | 92448 | |||
服务器响应时间 | 2.86 | 3.80 | 5.67 | 11.28 |
损失交易比例 | 0 | 0 | 60% | 95% |
每日交易量 | 4622 | 5085 | 2219 | 300 |
日收入 | 83203 | 91524 | 39938 | 5408 |
可能的日收益 | 83203 | 91524 | 99844 | |
损失的日收益 | |
|
59906 |
究其原因,我们不难发现,服务器的性能是导致这种现象的最根本的原因。当服务器负载接近边界时,负载的一个小小的增长都有可能使服务器陷入象死锁那样的一种境地。由此可以得出,如何优化Web服务器性能将是今后一段时间研究的一个热点。许多服务器制造商都在努力推出性能更加优良的服务器,但是单一服务器结构有一个致命的缺陷,那就是由于服务器的处理能力有限,有可能会出现死锁的情况。死锁的产生是由于新请求的到达率大于系统服务率,系统没有能力在短期内处理所有的请求,导致等待队列溢出,系统稳定状态转为不稳定状态,最后崩溃。集群服务器具有良好的可扩展性,可以随着负载的增大动态地向集群中增加服务器,从而就避免了由于处理能力不足而导致的系统崩溃。
回页首
在集群系统中,粒度指的是负载调度和迁移的单位。集群系统中的粗粒度指的是调度和迁移的单位是服务,而细粒度指的是进程。目前,关于集群式服务器的研究主要集中在体系结构和负载平衡策略的研究上,其中负载平衡策略的研究又是体系结构研究的基础。早期的集群式服务器系统常采用Round-Robin DNS算法实现客户请求的分发。实际上是一种粗粒度的负载分配策略。
正常情况下,域名服务器将主机名映射为一个IP地址,为了改善负载平衡状况,早期的集群服务器系统采用RR-DNS(Round-Robin DNS)调度算法将一个域名映射为一组IP地址,允许客户端链接到服务器集群中的某一台服务器上,由此提供了服务器站点的伸缩性。一些可伸缩Web服务器(例如Eddie和NCSA的Scalable Web Server)采用RR-DNS实现负载平衡,一些高吞吐率的站点(Yahoo)也继续采用这种简单应用。图2为这类服务器结构的工作原理图。
RR-DNS在解析域名时,附加一个生存期(TTL:Time-To-Live),这样一个请求生成后TTL时间内没有获得应答信息,可以向RR-DNS获取不同的IP地址。
- 客户发出地址请求(URL) 地址请求报文到达DNS
- DNS选择服务器IP地址和TTL
- 地址映象(URL->ADDRESS 1) 地址映象(URL->ADDRESS 1)
- 客户向服务器1发出文档请求
- 服务器1响应客户的文档请求
在一个TTL时期内,多个域名请求将被映射到相同的IP地址,这样大量的客户端请求可能出现在同一服务器上,导致明显的负载失衡。如果TTL很小,又会明显增加域名解析的网络负载。
另一个相关问题是由于客户端缓存域名-IP地址解析结果,客户端可以在未来的任意时刻发送请求,导致服务器的负载无法得到控制,出现服务器负载失衡。
为解决请求的负载分布均衡问题,研究者对RR-DNS算法进行了多种改进,这些改进依据TTL的设定形式可分为TTL恒定算法和自适应TTL算法。
TTL恒定算法 TTL恒定算法根据用户使用系统状态信息的情况又可分为系统无状态算法、基于服务器状态算法、基于客户状态算法和基于服务器/客户状态算法。
- 系统无状态算法指DNS服务器按固定时间间隔将客户请求分发到不同服务器上。例如时刻
的客户接受服务器k1的服务,时刻
的客户接受服务器k2的服务,式中的为TTL值。客户获取服务器地址后,将地址缓存在客户端,然后根据需要,向服务器发请求。SSL:系统无状态算法system-stateless algorithm
使用系统无状态算法,DNS只能控制部分请求的流向,由于不考虑服务器的容量和可用性,以及客户请求到达的不确定性,导致服务器超载或将请求发送到不可用服务器上,此算法性能很差,没有实用价值。
- 获取服务器状态的目的是为了选择可用性更高的服务器处理客户请求,防止服务器阻塞或服务失败。服务器状态算法需要使用简单的服务器侦听机制(例如心跳协议等)对服务器状态进行定时跟踪。当客户请求到达时,将负载最轻的服务器地址映射给客户端。SUN-SCALR在实现上就是采用这种机制。SSB:基于服务器状态算法Server-state-based algorithm
- 来自客户端的信息可归结为客户访问的平均负载状况和客户分布情况。如果不考虑客户的优先级高低,CSB算法使用HLW(hidden load weight)参量描述新客户的到达率(TTL周期内,访问服务器的新客户数量),根据新客户到达率,进行服务器分配,这类算法的典型代表是MRRP(multitier round-robin policy)。CSB:基于客户状态算法Client-state-based algorithm
另外,Cisco的Distributed Director在实现上也采用CSB策略,Distributed Director在服务器集群中充当主域名服务器,根据客户-服务器的拓扑距离和新客户到达率,选择最适合的服务器分发给客户。
- 在DNS算法中,同时使用服务器状态和客户状态信息时,获得的性能往往是最高的。例如Distributed Director的DNS算法以服务器可用信息和客户的距离信息为指标分配处理服务器。当节点服务器超载,服务器发送异步警报反馈信息给DNS控制器,控制器将此服务器从可用服务器表中剔除,根据客户状态信息选择最有利的服务器处理客户请求。使用此算法需要对服务器状态进行动态分析和预测。SCSB:基于服务器/客户状态的算法server and client state based algorithm
- 根据各台实际服务器的处理能力给它们分配不同的权重,使具有相同权重的服务器获得链接的概率相同,高权重的服务器获得链接的概率比低权重服务器获得链接的概率大。WRR:带有权重的RR算法 Weight Round-Robin algorithm
自适应TTL算法[20] 为平衡多服务器节点的负载,特别是异构服务器的负载,人们提出了自适应的TTL算法。这类算法使用基于服务器/客户状态DNS策略选择节点服务器,并动态调整TTL值。在异构服务器集群中,根据各服务器容量不同,设置的TTL值也不完全相同,由此控制因负载不对称造成的超载问题。
自适应TTL算法使用两步表决机制:首先DNS选择服务器的方法和基于客户状态算法相似;第二步,DNS根据负载分布情况、服务器处理能力和服务器的繁忙程度选择合适的TTL值,服务器越忙,设定的TTL值越小。
另外,自适应TTL算法的可扩展性很强,算法实现中的数据都可以动态获得。使用自适应TTL算法可以使服务器集群比较容易地从局域网拓展到广域网。
由于客户端和中间域名服务器缓存URL-IP地址映射,使用服务器状态信息的DNS算法不能保证负载平衡[15],每个地址缓存都有可能引发大量的客户请求阻塞集群中的某个服务器节点。因此,合理地预测客户请求的到达率对于选择服务器更加有效。
使用客户到达率信息和服务器监听的调度算法可以获得更高可用性的服务器。但是这种算法明显不适于异构型集群服务器。
为平衡分布系统的请求负载,自适应TTL算法是最可靠、有效的。但是,这种算法忽略了客户-服务器距离的重要性。
算法名称 | 优点 | 缺点 | |
固定 TTL 算法 | 系统无状态算法 | 简单 | 不实用 |
基于服务器状态算法 | 提高服务器可用性 | 不能保证负载均衡 | |
基于客户状态算法 | |
|
|
基于服务器/客户状态算法 | 可以获得更高可用性的服务器 | 不适于异构型集群服务器 | |
自适应TTL算法 | DNS算法中可靠性最好、效率最高的算法 | 忽略了客户-服务器距离的重要性 |
为实现客户请求的集中调度和完全路由控制,采用细粒度负载分配策略的服务器结构中必须包含一个路由器节点──平衡器(可能是一个硬件路由器或集群服务器中配置专用软件的节点)接收发向Web站点的所有请求,根据某种负载平衡算法将请求转发到不同的服务器节点上。
与基于DNS的体系结构不同的是,平衡器采用单一的、虚拟IP地址IP-SVA(single virtual IP adress),这个IP地址是众所周知的一个IP地址,而节点服务器的实际地址对用户是透明的。由于此机制是在URL层进行请求的处理,Web页中包含的多个目标,可以由集群中的不同节点提供,这样提供了比RR-DNS更细粒度的控制策略。
根据路由机制的不同,细粒度负载分配策略又可分为报文重写(单向重写或双向重写)、报文转发和HTTP重定向。
PDR采用集中调度方式完成客户请求的路由控制,服务器系统的平衡器负责客户请求的接收、分发和结果的返回工作。与RR-DNS策略不同,平衡器在IP层进行地址重写,使用动态地址映射表,实现客户请求的重定向。采用单一的虚拟IP地址(IP-SVA),用户可见的只是平衡器,节点服务器是透明的。在选择节点服务器时采用的调度策略主要有:Round Robin(轮转)、Weighted Round Robin(加权轮转)、Least Connection(最少连接)和Weighted Least Connection(加权最少连接)。平衡器将客户和节点服务器的映射添加到映射表中,这样就保证了同一客户的所有请求都发送到同一台节点服务器上,从而保证了访问的持续性。采用PDR策略的典型代表是Cisco的Local Director,从路由机制上看,Local Director当前采用最少连接数策略。图1-3给出了Local Director处理客户请求的原理图。
工作流程
- 客户向服务器发出请求
- 平衡器选择客户请求的处理节点
- 将客户请求的目的IP地址(IP-SVA)改写为节点服务器地址(address1)
- 将客户请求发送给处理节点
- 处理节点将结果返回给平衡器
- 平衡器将应答报文的源IP地址(address1)改写为IP-SVA
- 客户接收应答报文
性能分析 与粗粒度负载平衡策略不同,PDR在IP级进行负载平衡分配,这样就省去了从应用层到IP层的通讯开销,因此有效缩短了服务器处理时间。较DNS机制,性能提高很大。但是这种策略也存在如下问题:
- 平衡器容量有限,导致系统可伸缩性不高。另外,平衡器可能成为整个服务器集群的瓶颈。
- 此机制只适于在局域网范围内实现。
在某些体系结构中,平衡器对接收的客户请求进行二次路由,将客户报文的目的IP地址改写为实际处理节点的IP地址,例如基本的TCP路由机制[15]。
在TCP路由机制中,服务器集群由一组节点服务器和一个TCP路由器组成,TCP路由器充当IP地址平衡器。当客户请求到达TCP路由器时,由于IP-SVA是唯一公开的IP地址,平衡器将请求报文中的目标IP地址重写为节点服务器的私有IP地址。由于一个客户请求可能是由多个报文构成,TCP路由器在地址表中记录客户(具有相同的源IP地址)与执行服务器的地址映射,保证来自同一客户的所有报文都能到达同一台节点服务器。服务器在发送应答报文给客户时,将平衡器的IP-SVA写入源IP地址,这样客户并不知道请求是由隐藏的执行服务器完成。图4给出了服务器使用报文单向重写策略时,客户请求的执行过程。
工作流程:
- 客户向服务器发出请求
- 平衡器进行地址解析,选择执行服务器
- 平衡器用执行服务器的私有地址(address1)替换客户请求报文的目的IP地址
- 客户请求报文二次路由,到达执行服务器
- 执行服务器处理客户请求,并将IP-SVA写入应答报文的源IP地址中
- 客户接收应答报文
性能分析 使用报文单向重写机制可以提高系统可用性程度,当平衡器节点出现故障时,路由表可以由原平衡器迁移到新的服务器上,服务器的结构也可以从局域网拓展到广域网。但是这种机制导致服务器结构透明性较差,而且执行服务器和平衡器在判断客户请求是否结束上存在困难。
由于报文重写增加了平衡器处理请求的复杂度,导致平衡器负载加重,研究者提出了报文转发策略(PF)。采用PF策略,平衡器和执行服务器共用一个IP-SVA地址,客户请求报文到达平衡器后,平衡器根据调度选择执行服务器,利用执行服务器的物理地址(MAC)将报文转发给执行节点。转发过程中不需要进行地址解析,所以不必改动客户请求报文。采用PF策略的典型代表是IBM的Network Dispatcher。
局域网内部的Network Dispatcher集群处理客户请求的原理与图5相似,其工作流程如下:
- 客户向服务器发出请求报文;
- 平衡器根据负载平衡策略选择执行服务器;
- 平衡器利用执行服务器的私有MAC地址转发客户报文;
- 客户报文路由;
- 执行服务器处理客户请求;
- 执行服务器将应答报文发送给客户。
为了将服务器集群从局域网拓展到广域网,Network Dispatcher采用两级平衡器机制,图5显示了广域网服务器集群的原理图。一级平衡器到二级服务器之间采用类似报文单向重写策略,平衡器将客户请求报文的目的地址(IP-SVA)改写为二级平衡器的IP地址,选择二级平衡器的原则是根据客户-服务器间的距离,将客户请求分发到最近的服务器子群上。二级平衡器将客户请求报文的目的地址改回IP-SVA,然后将报文转发到执行服务器上,服务器子群要求必须在同一局域网中。
在广域网环境下,实现客户请求报文处理的流程是:
- 客户向服务器发送请求报文;
- 一级平衡器根据客户-服务器距离选择二级平衡器;
- 一级平衡器将客户报文的目的地址改写为二级平衡器的IP地址;
- 客户请求报文由一级平衡器向二级平衡器路由;
- 二级平衡器根据负载平衡策略选择执行服务器;
- 二级平衡器将客户请求报文的目的地址改写为IP-SVA;
- 客户请求报文转发;
- 执行服务器将应答报文直接传送给客户。
随着负载数量的增长,相应的处理变得越来越复杂(每个服务器节点每秒处理的请求数量有限),目前路由器只负责接收报文,但链接的复杂性、每个请求的返回数据量都限制了路由器的可伸缩性。
集中式平衡器接收所有客户请求,使用HTTP重定向机制将客户请求分发到不同的执行服务器上。平衡器根据特殊的响应状态码,指明客户请求文件在服务器上的位置,因此重定向机制是高度透明的。与其他分发机制不同的是,HTTP重定向机制不需要对通讯报文的IP地址进行修改,HTTP重定向机制可以由以下两种技术实现。
2.4.1 基于服务器状态分发 在分布式服务器集群体系结构中,修正现有的HTTP协议,增加新方法实现对Web服务器的管理,改变平衡器与执行服务器间的信息交换。由于平衡器需要考虑服务器的负载情况,每个执行服务器必须周期性地报告处理进程数量和客户请求到达率。平衡器选择负载最轻的执行服务器处理新的客户请求。
2.4.2 基于位置的分发 Cisco的Distributed Director提供了两种分发模式,第一种是基于DNS的SCSB策略,第二种为HTTP重定向策略。Distributed Director评估客户-服务器距离和节点可用性,将客户请求重定向到最合适的执行服务器。
基于平衡器的报文双向重写机制的问题是,平衡器必须对应答报文进行重写,而应答报文的数量明显超过请求报文的数量。
使用TCP路由器结构的报文单向重写机制,由于执行服务器处理众多的应答报文,减轻了平衡器的负载。广域网环境下的Network Dispatcher仅对请求报文进行两次重写,因而执行效率更高。
报文转发机制可以有效避免报文重写带来的开销,然而共享单IP地址导致静态调度策略失效(服务器状态不决定路由)。基于路由的平衡器需要对每个报文进行二次路由,基于广播的平衡器需要把报文广播到每个执行服务器,这样明显加重了服务器负载。
局域网环境下的Network Dispatcher结构避免了共享IP地址、TCP路由和双向重写的开销等问题,但是它只能在同一网段内实现,可伸缩性很差。HTTP重定向可以很好地应用于局域网和广域网中,但必须复制一定数量的TCP连接。
基于DNS机构的实现机制可以明显减轻服务器的瓶颈效应,可伸缩能力得到加强,服务器环境从局域网拓展到广域网。但是,使用这种结构,服务器的数量不能超过32台(受UDP报文长度的限制)。基于DNS结构的服务器通过地址映射决定客户请求的目的地址,然而,这种粗粒度负载平衡机制要求TTL必须大于0,由于客户端对服务器地址进行缓存,导致服务器负载平衡不能保证,人们提出了基于状态信息算法和自适应TTL算法对DNS策略的性能进行改进。总的来说,单纯基于DNS策略的服务器适合于小规模的同构型服务器集群,但不适于异构性服务器结构。
基于平衡器结构的服务器由于受到单仲裁入口的限制,客户请求迅速增长可能导致平衡器成为系统瓶颈;由于平衡器对客户请求报文重写或转发,增加了客户等待延迟,降低了服务器性能;另外使用集中调度策略,若平衡器当机,则整个系统都会崩溃。从另一方面讲,平衡器实现的细粒度负载平衡策略,共享服务器IP地址又克服客户端网络层地址缓存问题。基于服务器拓扑结构实现的报文重写和转发策略是目前局域网或高速广域网中集群服务器实现的主要策略。
改进执行服务器处理过程将原有的请求集中控制改为部分分布控制,是服务器结构研究的一种进步,与平衡器结构服务器相同,这种技术也是一种细粒度负载平衡策略,但它带来的客户等待延迟要比其他策略增加很多。
从目前集群式服务器结构研究的现状分析可以看出,今后服务器集群的发展趋势将是面向广域网的分布控制的服务器集群研究。
集线器–集线器也叫Hub,工作在物理层(最底层),没有相匹配的软件系统,是纯硬件设备。集线器主要用来连接计算机等网络终端。集线器为共享式带宽,连接在集线器上的任何一个设备发送数据时,其他所有设备必须等待,此设备享有全部带宽,通讯完毕,再由其他设备使用带宽。正因此,集线器连接了一个冲突域的网络。所有设备相互交替使用,就好象大家一起过一根独木桥一样。 集线器不能判断数据包的目的地和类型,所以如果是广播数据包也依然转发,而且所有设备发出数据以广播方式发送到每个接口,这样集线器也连接了一个广播域的网络。
交换机–交换机Switch,工作在数据链路层(第二层),稍微高端一点的交换机都有一个操作系统来支持。和集线器一样主要用于连接计算机等网络终端设备。交换机比集线器更加先进,允许连接在交换机上的设备并行通讯,好比高速公路上的汽车并行行使一般,设备间通讯不会再发生冲突,因此交换机打破了冲突域,交换机每个接口是一个冲突域,不会与其他接口发生通讯冲突。并且有系统的交换机可以记录MAC地址表,发送的数据不会再以广播方式发送到每个接口,而是直接到达目的接口,节省了接口带宽。但是交换机和集线器一样不能判断广播数据包,会把广播发送到全部接口,所以交换机和集线器一样连接了一个广播域网络。字串2 高端一点的交换机不仅可以记录MAC地址表,还可以划分VLAN(虚拟局域网)来隔离广播,但是VLAN间也同样不能通讯。要使VLAN间能够通讯,必须有三层设备介入。 路由器–路由器Router,工作在网络层(第三层),所有的路由器都有自己的操作系统来维持,并且需要人员调试,否则不能工作。路由器没有那么多接口,主要用来进行网络与网络的连接。 简单的说路由器把数据从一个网络发送到另一个网络,这个过程就叫路由。路由器不仅能像交换机一样隔离冲突域,而且还能检测广播数据包,并丢弃广播包来隔离广播域,有效的扩大了网络的规模。在路由器中记录着路由表,路由器以此来转发数据,以实现网络间的通讯。路由器的介入可以使交换机划分的VLAN实现互相通讯。 集线器:纯硬件、用于连接网络终端、不能打破冲突域和广播域。 交换机:拥有软件系统、用于连接网络终端、能够打破冲突域,但是不能分割广播域。 路由器:拥有软件系统、用于连接网络、可以打破冲突域也可以分割广播域,是连接大型网络的比备设备 MODEM其实是取MOdulatorDEModulator两个英文的缩写合并而成,译成中文就是”调制解调器”。MODEM的主要功能就是将数据在数字信号和模拟信号之间转换,以实现在电话线上的传输。现在的MODEM基本上都带有传真和语音功能,所以通常叫做Fax/Voice/Modem。在日常生活使用的电话线路中,所有信息都是以连续性的模拟信号,也就是音频信号来表示和传送,而对电脑来说,只认识0和1两个数字,所有信息都是以不连续的数字信号来表示和传送,这下MODEM就派上用场了!电脑先把数据交给MODEM,MODEM把数字信号转为音频模拟信号,送进电话线里这个过程叫”调制”;在接收一方MODEM收到音频模拟信号,将其还原为数字信息交给电脑处理,这个过程叫”解调”。MODEM的作用打个比方,就好比是网络这座桥梁两端的桥头堡。至于电脑与MODEM之间又是如何进行沟通的呢?著名通讯设备生产商Hayes为此制定了一套指令,专门用于电脑(主要是通过其中的通讯软件)控制MODEM的各项操作,也就是我们常说的”AT指令”。除去”A/”外的每个指令都是以”AT”(”ATtention”的缩写)开头来表示,似乎是提醒MODEM注意。 MODEM上有几个很抢眼的面板灯,当MODEM正常工作时,它们会显得格外的忙碌一闪一闪地按照连线时的实际传输速率传送数据。我们当然应该知道每个灯所代表的意义,以便及时掌握MODEM当前所处的状态。当然,现在市面上也有一些产品,在每个灯的旁边设有简单的提示标识,对用户来说真是非常体贴。 |
负载均衡
负载均衡(Load Balancing)负载均衡建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
概述
详细信息
含义
算法
功能
负载均衡技术主要应用
四个分类
软/硬件负载均衡
本地/全局负载均衡
部署方式
1、路由模式(推荐)
2、桥接模式
3、服务直接返回模式
详细配置
常见产品
实际解决方案
吞吐量
中文名称:吞吐量英文名称:throughput
定义:对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
应用学科:通信科技(一级学科);通信网络(二级学科)
对网络、设备、端口、虚电路或其他设施,单位时间内成功地传送数据的数量(以比特、字节、分组等测量)。
网络范畴下的吞吐量
系统结构范畴下的吞吐量
港口吞吐量
什么是港口吞吐量、操作量、装卸自然吨?
物流范畴下的吞吐量
机场吞吐量
中转站吞吐量
-
扩展阅读:
-
- IT168术语详解,《计算机网络系统方法》(美)Larry L.Peterson Bruce S.Davie 叶新铭 贾波 等译
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/149383.html