图形几何——三角形:三角函数汇总

图形几何——三角形:三角函数汇总sin sin cos cos tan tan sin2 cos cos2 sin tan2 cot sin2 cos cos2 sin tan2 c

大家好,欢迎来到IT知识分享网。

三角函数汇总

三角函数角度转换关系

  • 奇变偶不变,符号看象限


正弦函数 余弦函数 正切函数
sin ⁡ ( − α ) = − sin ⁡ α \sin(-\alpha) = -\sin\alpha sin(α)=sinα cos ⁡ ( − α ) = cos ⁡ α \cos(-\alpha) = \cos \alpha cos(α)=cosα tan ⁡ ( − α ) = − tan ⁡ α \tan(-\alpha) = -\tan\alpha tan(α)=tanα
sin ⁡ ( π 2 + α ) = cos ⁡ α \sin\Big(\dfrac \pi2 + \alpha \Big) = \cos \alpha sin(2π+α)=cosα cos ⁡ ( π 2 + α ) = − sin ⁡ α \cos\Big(\dfrac \pi2 + \alpha \Big) = -\sin \alpha cos(2π+α)=sinα tan ⁡ ( π 2 + α ) = − cot ⁡ α \tan\Big(\dfrac \pi2 + \alpha \Big) = -\cot \alpha tan(2π+α)=cotα
sin ⁡ ( π 2 − α ) = cos ⁡ α \sin\Big(\dfrac \pi2 – \alpha \Big) = \cos \alpha sin(2πα)=cosα cos ⁡ ( π 2 − α ) = sin ⁡ α \cos\Big(\dfrac \pi2 – \alpha \Big) = \sin \alpha cos(2πα)=sinα tan ⁡ ( π 2 − α ) = cot ⁡ α \tan\Big(\dfrac \pi2 – \alpha \Big) = \cot \alpha tan(2πα)=cotα
sin ⁡ ( π + α ) = − sin ⁡ α \sin\Big(\pi + \alpha \Big) = -\sin \alpha sin(π+α)=sinα cos ⁡ ( π + α ) = − cos ⁡ α \cos\Big(\pi + \alpha \Big) = -\cos \alpha cos(π+α)=cosα tan ⁡ ( π + α ) = tan ⁡ α \tan\Big(\pi + \alpha \Big) = \tan \alpha tan(π+α)=tanα
sin ⁡ ( π − α ) = sin ⁡ α \sin\Big(\pi – \alpha \Big) = \sin \alpha sin(πα)=sinα cos ⁡ ( π − α ) = − cos ⁡ α \cos\Big(\pi – \alpha \Big) = -\cos \alpha cos(πα)=cosα tan ⁡ ( π − α ) = − tan ⁡ α \tan\Big(\pi – \alpha \Big) = -\tan \alpha tan(πα)=tanα
sin ⁡ ( π + α ) = − sin ⁡ α \sin\Big(\pi + \alpha \Big) = -\sin \alpha sin(π+α)=sinα cos ⁡ ( π + α ) = − cos ⁡ α \cos\Big(\pi + \alpha \Big) = -\cos \alpha cos(π+α)=cosα tan ⁡ ( π + α ) = tan ⁡ α \tan\Big(\pi + \alpha \Big) = \tan \alpha tan(π+α)=tanα
sin ⁡ ( 2 π − α ) = − sin ⁡ α \sin\Big(2\pi – \alpha \Big) = -\sin \alpha sin(2πα)=sinα cos ⁡ ( 2 π − α ) = cos ⁡ α \cos\Big(2\pi – \alpha \Big) = \cos \alpha cos(2πα)=cosα tan ⁡ ( 2 π − α ) = − tan ⁡ α \tan\Big(2\pi – \alpha \Big) = -\tan \alpha tan(2πα)=tanα

倍角公式

  • 正弦倍角公式
    sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α = 2 tan ⁡ α 1 + tan ⁡ 2 α \begin{split} \sin 2\alpha &= 2\sin \alpha \cos \alpha \\ &= \dfrac{2\tan \alpha}{1 + \tan^2 \alpha} \\ \end{split} sin2α=2sinαcosα=1+tan2α2tanα
  • 余弦倍角公式
    cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α = 1 − tan ⁡ 2 α 1 + tan ⁡ 2 α \begin{split} \cos 2\alpha &= \cos^2 \alpha – \sin^2 \alpha \\ & = 2\cos^2 \alpha – 1 \\ &= 1 – 2\sin^2 \alpha \\ &= \dfrac{1 – \tan^2 \alpha}{1 + \tan^2 \alpha} \\ \end{split} cos2α=cos2αsin2α=2cos2α1=12sin2α=1+tan2α1tan2α
  • 正切倍角公式
    tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan 2\alpha = \dfrac{2\tan \alpha}{1 – \tan^2 \alpha} tan2α=1tan2α2tanα

半角公式

sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 \begin{split} \sin^2 \alpha &= \dfrac{1 – \cos 2\alpha}{2} \\ \cos^2 \alpha &= \dfrac{1 + \cos 2\alpha}{2} \\ \end{split} sin2αcos2α=21cos2α=21+cos2α

同角三角函数

s i n 2 α + c o s 2 α = 1 1 + t a n 2 α = s e c 2 α 1 + c o t 2 α = c s c 2 α sin^2\alpha + cos^2\alpha = 1 \\ 1 + tan^2\alpha = sec^2\alpha \\ 1 + cot^2 \alpha = csc^2 \alpha sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α

积化和差三角函数

s i n α s i n β = − 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] s i n α c o s β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] c o s α c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] sin\alpha sin\beta = -\frac 12 \Big[ cos(\alpha + \beta) – cos(\alpha – \beta)\Big] \\ sin\alpha cos\beta = \frac 12 \Big[ sin(\alpha + \beta) + sin(\alpha – \beta)\Big] \\ cos\alpha cos\beta = \frac 12 \Big[ cos(\alpha + \beta) + cos(\alpha – \beta)\Big] \\ sinαsinβ=21[cos(α+β)cos(αβ)]sinαcosβ=21[sin(α+β)+sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]

和差化积三角函数

s i n α + s i n β = 2 s i n α + β 2 c o s α − β 2 c o s α + c o s β = 2 c o s α + β 2 c o s α − β 2 c o s α − c o s β = − 2 s i n α + β 2 s i n α − β 2 a s i n α + b c o s α = a 2 + b 2 s i n ( α + ψ ) sin\alpha + sin\beta = 2sin\frac{\alpha + \beta}{2}cos\frac{\alpha – \beta}{2} \\ cos\alpha + cos\beta = 2cos\frac{\alpha + \beta}{2}cos\frac{\alpha – \beta}{2} \\ cos\alpha – cos\beta = -2sin\frac{\alpha + \beta}{2}sin\frac{\alpha – \beta}{2} \\ asin\alpha + bcos\alpha = \sqrt{a^2 + b^2}sin(\alpha + \psi) sinα+sinβ=2sin2α+βcos2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβasinα+bcosα=a2+b2
sin(α+
ψ)

倍角公式

  • 正弦倍角公式
    sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α = 2 tan ⁡ α 1 + tan ⁡ 2 α \begin{split} \sin 2\alpha &= 2\sin \alpha \cos \alpha \\ &= \dfrac{2\tan \alpha}{1 + \tan^2 \alpha} \\ \end{split} sin2α=2sinαcosα=1+tan2α2tanα
  • 余弦倍角公式
    cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α = 1 − tan ⁡ 2 α 1 + tan ⁡ 2 α \begin{split} \cos 2\alpha &= \cos^2 \alpha – \sin^2 \alpha \\ & = 2\cos^2 \alpha – 1 \\ &= 1 – 2\sin^2 \alpha \\ &= \dfrac{1 – \tan^2 \alpha}{1 + \tan^2 \alpha} \\ \end{split} cos2α=cos2αsin2α=2cos2α1=12sin2α=1+tan2α1tan2α
  • 正切倍角公式
    tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan 2\alpha = \dfrac{2\tan \alpha}{1 – \tan^2 \alpha} tan2α=1tan2α2tanα

半角公式

sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 \begin{split} \sin^2 \alpha &= \dfrac{1 – \cos 2\alpha}{2} \\ \cos^2 \alpha &= \dfrac{1 + \cos 2\alpha}{2} \\ \end{split} sin2αcos2α=21cos2α=21+cos2α

同角三角函数

s i n 2 α + c o s 2 α = 1 1 + t a n 2 α = s e c 2 α 1 + c o t 2 α = c s c 2 α sin^2\alpha + cos^2\alpha = 1 \\ 1 + tan^2\alpha = sec^2\alpha \\ 1 + cot^2 \alpha = csc^2 \alpha sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α

积化和差三角函数

s i n α s i n β = − 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] s i n α c o s β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] c o s α c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] sin\alpha sin\beta = -\frac 12 \Big[ cos(\alpha + \beta) – cos(\alpha – \beta)\Big] \\ sin\alpha cos\beta = \frac 12 \Big[ sin(\alpha + \beta) + sin(\alpha – \beta)\Big] \\ cos\alpha cos\beta = \frac 12 \Big[ cos(\alpha + \beta) + cos(\alpha – \beta)\Big] \\ sinαsinβ=21[cos(α+β)cos(αβ)]sinαcosβ=21[sin(α+β)+sin(αβ)]cosαcosβ=21[cos(α+β)+cos(αβ)]

和差化积三角函数

s i n α + s i n β = 2 s i n α + β 2 c o s α − β 2 c o s α + c o s β = 2 c o s α + β 2 c o s α − β 2 c o s α − c o s β = − 2 s i n α + β 2 s i n α − β 2 a s i n α + b c o s α = a 2 + b 2 s i n ( α + ψ ) sin\alpha + sin\beta = 2sin\frac{\alpha + \beta}{2}cos\frac{\alpha – \beta}{2} \\ cos\alpha + cos\beta = 2cos\frac{\alpha + \beta}{2}cos\frac{\alpha – \beta}{2} \\ cos\alpha – cos\beta = -2sin\frac{\alpha + \beta}{2}sin\frac{\alpha – \beta}{2} \\ asin\alpha + bcos\alpha = \sqrt{a^2 + b^2}sin(\alpha + \psi) sinα+sinβ=2sin2α+βcos2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβasinα+bcosα=a2+b2
sin(α+
ψ)

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/149869.html

(0)
上一篇 2025-03-21 21:00
下一篇 2025-03-21 21:05

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信