大家好,欢迎来到IT知识分享网。
相对于位置和动量等力学量,在量子力学中角动量的内容丰富的多,因此值得进行专门的、深入的探讨。
注:从本讲起省略算符头上的帽子,并假设读者自知。
轨道角动量 L^
Definition
Commutation Relations
- [Lα,Lβ]=iℏϵαβγLγ
- [L2,Lα]≡0⇒CommonEigenstate ⇒Degeneracy
Eigenvalue Problems
自旋角动量 S^
Definition
Eigenvalue Problems
In this course, only electron, a Fermion, is considerd, which means we assume
s
equals
12
.
Orthonormal & Completeness
Let |ms=+12⟩=|1⟩,|ms=−12⟩=|0⟩
⟨i|j⟩=δij∑1i=0|i⟩⟨i|=I(unitoperator)
升降算符
J 总角动量
Definition
Properties
-
⎧⎩⎨⎪⎪J±|j,mj⟩=C|j,mj±1⟩, where C=ℏ(j±mj+1)(j∓mj)−−−−−−−−−−−−−−−−−√J+|j,+j⟩≡0J−|j,−j⟩≡0
(to be prooved ) - [J±,J2]≡0
proof
[J±,J2]===[Jx±iJy,J2][Jx,J2]±i[Jy,J2]0 - [J±,Jz]=∓ℏJ±
proof
[J±,Jz]=====[Jx±iJy,Jz][Jx,Jz]±i[Jy,Jz]−iℏJy±i⋅iℏJx∓ℏ(Jx±iJy)∓ℏJ± - [J±,J∓]=±2ℏJz
proof
[J±,J∓]====[Jx±iJy,Jx∓iJy][Jx,Jx]+[Jy,Jy]∓i([Jx,Jy]−[Jy,Jx])0+0±2ℏJz±2ℏJz - J±J∓=J2−J2z±ℏJz
proof
J±J∓====(Jx±iJy)(Jx∓iJy)J2x+J2y∓i(JxJy−JyJx)J2x+J2y±ℏJzJ2−J2z±ℏJz
泡利矩阵
Definition
Sα=ℏ2σα so that σ2α=1 .
Properties
- [σα,σβ]=2iϵαβγσγ
proof
[σα,σβ]=====[2ℏSα,2ℏSβ]4ℏ2[Sα,Sβ]4ℏ2⋅iℏϵαβγSγ2iϵαβγ⋅2ℏSγ2iϵαβγσγ - [σα,σβ]+=σασβ+σβσα≡0(α≠β)
proof
根据prop 1
σασβ−σβσα=2iϵαβγσγ
两边左乘
σα
σβ−σασβσα=2iϵαβγσασγ
两边右乘
σα
σασβσα−σβ=2iϵαβγσγσα
两式相加
4iϵαβγ(σασγ+σγσα)=0
因此
[σα,σβ]+=σασβ+σβσα≡0(provided
α≠β
)
if
α=β
,
[σα,σβ]+=σασβ+σβσα=2
To sum up
[σα,σβ]+=σασβ+σβσα=2δαβ - σασβ=δαβ+iϵαβγσγ
proof
σασβ−σβσα=σασβ+σβσα=2iϵαβγσγ2iϵαβγσγ+2δαβ
Therefore
σασβ=δαβ+iϵαβγσγ - DEF: σ±=σx±iσy2
- DEF: σ+=|1⟩⟨0|,σ−=|0⟩⟨1|
-
⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪σx=(0110)σy=(0i−i0)σz=(100−1)
proof
σ+=|1⟩⟨0|=(10)(01)=(0010)
σ−=|0⟩⟨1|=(01)(10)=(0100)
σx=σ++σ−=(0110)
σy=−i(σ+−σ−)=(0−ii0){
σz|1⟩=+1|1⟩σz|0⟩=−1|0⟩
σz=====IσzI(|0⟩⟨0|+|1⟩⟨1|)σz(|0⟩⟨0|+|1⟩⟨1|)|1⟩⟨1|−|0⟩⟨0|(1000)−(0001)(100−1)
总角动量 J^
Definition
J=L+S
Properties
- [Jα,Jβ]=iℏϵαβγLγ
[Jα,Sβ]≡0 - [J2,Jα]≡0
⇒{
J2|j,mj⟩=Jz|j,mj⟩=j(j+1)ℏ2|j,mj⟩,j=0,1,…mjℏ|j,mj⟩,mj=−j,−j+1,…,+j - [J±,J2]≡0
- [J±,Jz]=∓ℏJ±
- [J±,J∓]=±2ℏJz
- J±J∓=J2−J2z±ℏJz
角动量的本征值问题
用纯代数的方法,借助升降算符的性质,求解角动量的本征值问题,虽然没有物理图像,但是过程简洁。
J2|λ,m⟩=λℏ2|λ,m⟩Jz|λ,m⟩=mℏ|λ,m⟩
(
λ,m
unknown)
J2[J±|λ,m⟩]=J±J2|λ,m⟩=λℏ2[J±|λ,m⟩]Jz[J±|λ,m⟩]=(J±Jz±ℏJ±)|λ,m⟩=(m±1)ℏ[J±|λ,m⟩]
which means
However
Let
m0
&
m0+N
be the extremums
Thus
J+|λ,m0⟩≡0J−|λ,m0+N⟩≡0
As
We can get
λ2−m20+m0=0λ2−(m0+N)2−(m0+N)=0
⇒
Let
j=N2,N=0,1,2,...
角动量的耦合
Two electron’s coupling
S=S1+S2
- Commutation Relations
[S1α,S21]≡0,[S2α,S22]≡0,[Sα,S2]≡0
[S1α,S1β]=iℏϵαβγS1γ,[S2α,S2β]=iℏϵαβγS2γ,[Sα,Sβ]=iℏϵαβγSγ
[S1α,S2β]=0 - Eigenvalue Equations
Tricks
-
⎛⎝⎜123⎞⎠⎟⨂(10100)=⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜101002020030300⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟
低维矢量到高维矢量。
2.
Thanks to Prof. Guo Hong
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/153537.html