大家好,欢迎来到IT知识分享网。
在传热传质基础一书中,努塞尔数的定义如下,对流(convection)传热与纯热传导(pure conduction)传热之比。
但是似乎在热对流研究领域,努赛尔数有另一个定义,即总传热与热传导传热之比。
上面两个式子的差异主要在分子上,即分子是对流传热还是总传热。这个部分我还没想明白,下面主要以第二个公式为例,说明在vertical heat convection 和horizonal heat convection中如何计算系统的努赛尔数。
文献中给出了具体计算公式:
注意这里是 θ \theta θ代表无量纲温度。
N u = ⟨ v T − α ∂ T / ∂ y ⟩ V , t α Δ T / H , N u=\frac{\langle v T-\alpha \partial T / \partial y\rangle_{V, t}}{\alpha \Delta_T / H}, Nu=αΔT/H⟨vT−α∂T/∂y⟩V,t,
这里的下标V,t代表空间平均和时间平均。上式是有量纲的结果。对其进行无量纲化后,计算公式为:
N u = RaPr ⟨ v ∗ T ∗ ⟩ V , t + 1 N u=\sqrt{\operatorname{RaPr}}\left\langle v^* T^*\right\rangle_{V, t}+1 Nu=RaPr⟨v∗T∗⟩V,t+1
其实这里还有一点不是很理解,就是为什么温度梯度那一项经过平均后除以分母会等于1,如果是pure conduction的话,全场内任意处的温度梯度应该是一致的,因为温度会线性分布,但是现在是对流,全场温度梯度经过平均后会等于pure conduction的情况吗?(这个问题昨天晚上想明白了,在这里补充一下:)
其实很简单,就是一时脑子转不过来,还是智商不行。。。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/153697.html