大家好,欢迎来到IT知识分享网。
假设一个集合包含n个元素,要求计算该集合的子集个数。
该集合的所有子集,也叫该集合的幂集,比如集合{1,2,3}的所有子集为 空集,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}数一数,一共8个,由此推测为2的三次方,即2的三次幂。那么这个结论是否正确呢?
方法1:
一共集合有n个元素,它的子集的个数就是对这n个元素做组合,一共有n个位置可以组合,每个位置上该元素可以出现也可以不出现,所以最后总的个数为2的n次方。
方法2:
具有n个元素的集合的子集其实就是空集,含有一个元素的集合,含有两个元素的集合…含有n个元素集合,这集合的和就是,如图1所示。
根据多项式的公式和定理知道,上面式子之和为2的n次方。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/155392.html