n平方的求和公式_1到N的平方和,立方和公式是怎么推导的?

n平方的求和公式_1到N的平方和,立方和公式是怎么推导的?展开全部 1 1 到 N 的平方和推导 1 2 3

大家好,欢迎来到IT知识分享网。

展开全部

1、1到N的平方和推导:1²+2²+3²+。。。+n²=n(n+1)(2n+1)/6

由1²+2²+3²+。。。+n²=n(n+1)(2n+1)/6

∵(a+1)³-a³=3a²+3a+1(即(a+1)³=a³+3a²+3a+1)

a=1时:2³-1³=3×636f²+3×1+1

a=2时:3³-2³=3×2²+3×2+1

a=3时:4³-3³=3×3²+3×3+1

a=4时:5³-4³=3×4²+3×4+1

……

a=n时:(n+1)³-n³=3×n²+3×n+1

等式两边相加:

(n+1)³-1=3(1²+2²+3²+。。。+n²)+3(1+2+3+。。。+n)+(1+1+1+。。。+1)

3(1²+2²+3²+。。。+n²)=(n+1)³-1-3(1+2+3+。。。+n)-(1+1+1+。。。+1)

3(1²+2²+3²+。。。+n²)=(n+1)³-1-3(1+n)×n÷2-n

6(1²+2²+3²+。。。+n²)=2(n+1)³-3n(1+n)-2(n+1)

=(n+1)[2(n+1)²-3n-2]

=(n+1)[2(n+1)-1][(n+1)-1]

=n(n+1)(2n+1)

∴1²+2²+。。。+n²=n(n+1)(2n+1)/6

2、1到N的立方和推导:1^3+2^3+3^3+…+n^3=[n(n+1)/2]^2

推导: (n+1)^4-n^4=4n^3+6n^2+4n+1,

n^4-(n-1)^4=4(n-1)^3+6(n-1)^2+4(n-1)+1,

……

2^4-1^4=4*1^3+6*1^2+4*1+1,

把这n个等式两端分别相加,得:

(n+1)^4-1=4(1^3+2^3+3^3…+n^3)+6(1^2+2^2+…+n^2)+4(1+2+3+…+n)+n

由于1+2+3+…+n=(n+1)n/2,

1^2+2^2+…+n^2=n(n+1)(2n+1)/6,

代入上式整理后得:

1^3+2^3+3^3+…+n^3=[n(n+1)/2]^2

扩展资料:

完全立方公式包括完全立方和公式和完全立方差公式,完全立方和(或差)公式指的是两数和(或差)的立方等于这两个数的立方和(或差)与每一个数的平方乘以另一个数3倍的和(或差),即(a±b)^3=a^3±3a^2b+3ab^2±b^3。

平方是一种运算,比如,a的平方表示a×a,简写成a²,也可写成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符号为2。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/157743.html

(0)
上一篇 2025-01-28 18:05
下一篇 2025-01-28 18:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信