大家好,欢迎来到IT知识分享网。
前言
无论搞硬件还是搞软件,数学基础,都很重要,没有一定的数学基础,不管学的语言再多、会的芯片型号再多,也只能算皮毛;做算法的需要数学理论作为支撑,做芯片设计的也需要数理知识作为支撑,总之,对于我们理工科的人,核心的东西还是数学基础,比如三角函数的计算和变换在信号处理中就会经常碰到,有句话常说“代数烦、几何难,三角公式记不完”,三角公式再多,其本质还是通过最基本的公式推导出来的,这里给出常用的三角公式,希望可以帮到大家。
角度与弧度换算
360 ° = 2 π rad 360°=2\pi \;\text{rad} 360°=2πrad
180 ° = π rad 180°=\pi \;\text{rad} 180°=πrad
1 ° = π 180 rad ≈ 0.01745 rad 1°=\frac{\pi}{180}\;\text{rad}\approx 0.01745\;\text{rad} 1°=180πrad≈0.01745rad
1 rad = 180 ° π ≈ 57.30 ° 1\;\text{rad}=\frac{180°}{\pi}\approx 57.30° 1rad=π180°≈57.30°
定义式
正弦: sin α = a c \text{正弦:}\sin \alpha =\frac{a}{c} 正弦:sinα=ca
余弦: cos α = b c \text{余弦:}\cos \alpha =\frac{b}{c} 余弦:cosα=cb
正切: tan α = a b \text{正切:}\tan \alpha =\frac{a}{b} 正切:tanα=ba
余切: cot α = b a \text{余切:}\cot \alpha =\frac{b}{a} 余切:cotα=ab
正割: sec α = c b \text{正割:}\sec \alpha =\frac{c}{b} 正割:secα=bc
余割: csc α = c a \text{余割:}\csc \alpha =\frac{c}{a} 余割:cscα=ac
倒数关系:——————— \text{倒数关系:———————} 倒数关系:———————
cot α = 1 tan α \cot \alpha =\frac{1}{\tan \alpha} cotα=tanα1
sec α = 1 cos α \sec \alpha =\frac{1}{\cos \alpha} secα=cosα1
csc α = 1 sin α \csc \alpha =\frac{1}{\sin \alpha} cscα=sinα1
正弦定理
sin A a = sin B b = sin C c = 1 2 R \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} asinA=bsinB=csinC=2R1
余弦定理
a 2 = b 2 + c 2 − 2 b c cos A a^2=b^2+c^2-2bc\cos A a2=b2+c2−2bccosA
诱导公式(七组)
- 奇变偶不变,符号看象限
sin ( 2 k π + α ) = sin α k ∈ Z cos ( 2 k π + α ) = cos α k ∈ Z tan ( 2 k π + α ) = tan α k ∈ Z cot ( 2 k π + α ) = cot α k ∈ Z sec ( 2 k π + α ) = sec α k ∈ Z csc ( 2 k π + α ) = csc α k ∈ Z ‾ \underline{\begin{matrix} \sin \left( 2k\pi +\alpha \right) &=\sin \alpha& k\in \mathbb{Z}\\ \cos \left( 2k\pi +\alpha \right) &=\cos \alpha& k\in \mathbb{Z}\\ \tan \left( 2k\pi +\alpha \right) &=\tan \alpha& k\in \mathbb{Z}\\ \cot \left( 2k\pi +\alpha \right) &=\cot \alpha& k\in \mathbb{Z}\\ \sec \left( 2k\pi +\alpha \right) &=\sec \alpha& k\in \mathbb{Z}\\ \csc \left( 2k\pi +\alpha \right) &=\csc \alpha& k\in \mathbb{Z}\\ \end{matrix}} sin(2kπ+α)cos(2kπ+α)tan(2kπ+α)cot(2kπ+α)sec(2kπ+α)csc(2kπ+α)=sinα=cosα=tanα=cotα=secα=cscαk∈Zk∈Zk∈Zk∈Zk∈Zk∈Z
sin ( π + α ) = − sin α cos ( π + α ) = − cos α tan ( π + α ) = tan α cot ( π + α ) = cot α sec ( π + α ) = − sec α csc ( π + α ) = − csc α ‾ \underline{\begin{aligned} \sin \left( \pi +\alpha \right) &=-\sin \alpha\\ \cos \left( \pi +\alpha \right) &=-\cos \alpha\\ \tan \left( \pi +\alpha \right) &=\tan \alpha\\ \cot \left( \pi +\alpha \right) &=\cot \alpha\\ \sec \left( \pi +\alpha \right) &=-\sec \alpha\\ \csc \left( \pi +\alpha \right) &=-\csc \alpha\\ \end{aligned}} sin(π+α)cos(π+α)tan(π+α)cot(π+α)sec(π+α)csc(π+α)=−sinα=−cosα=tanα=cotα=−secα=−cscα
sin ( − α ) = − sin α cos ( − α ) = cos α tan ( − α ) = − tan α cot ( − α ) = − cot α sec ( − α ) = sec α csc ( − α ) = − csc α ‾ \underline{\begin{aligned} \sin \left( -\alpha \right) &=-\sin \alpha\\ \cos \left( -\alpha \right) &=\cos \alpha\\ \tan \left( -\alpha \right) &=-\tan \alpha\\ \cot \left( -\alpha \right) &=-\cot \alpha\\ \sec \left( -\alpha \right) &=\sec \alpha\\ \csc \left( -\alpha \right) &=-\csc \alpha\\ \end{aligned}} sin(−α)cos(−α)tan(−α)cot(−α)sec(−α)csc(−α)=−sinα=cosα=−tanα=−cotα=secα=−cscα
sin ( π − α ) = sin α cos ( π − α ) = − cos α tan ( π − α ) = − tan α cot ( π − α ) = − cot α sec ( π − α ) = − sec α csc ( π − α ) = csc α ‾ \underline{\begin{aligned} \sin \left( \pi -\alpha \right) &=\sin \alpha\\ \cos \left( \pi -\alpha \right) &=-\cos \alpha\\ \tan \left( \pi -\alpha \right) &=-\tan \alpha\\ \cot \left( \pi -\alpha \right) &=-\cot \alpha\\ \sec \left( \pi -\alpha \right) &=-\sec \alpha\\ \csc \left( \pi -\alpha \right) &=\csc \alpha\\ \end{aligned}} sin(π−α)cos(π−α)tan(π−α)cot(π−α)sec(π−α)csc(π−α)=sinα=−cosα=−tanα=−cotα=−secα=cscα
sin ( 2 π − α ) = − sin α cos ( 2 π − α ) = cos α tan ( 2 π − α ) = − tan α cot ( 2 π − α ) = − cot α sec ( 2 π − α ) = sec α csc ( 2 π − α ) = − csc α ‾ \underline{\begin{aligned} \sin \left( 2\pi -\alpha \right) &=-\sin \alpha\\ \cos \left( 2\pi -\alpha \right) &=\cos \alpha\\ \tan \left( 2\pi -\alpha \right) &=-\tan \alpha\\ \cot \left( 2\pi -\alpha \right) &=-\cot \alpha\\ \sec \left( 2\pi -\alpha \right) &=\sec \alpha\\ \csc \left( 2\pi -\alpha \right) &=-\csc \alpha\\ \end{aligned}} sin(2π−α)cos(2π−α)tan(2π−α)cot(2π−α)sec(2π−α)csc(2π−α)=−sinα=cosα=−tanα=−cotα=secα=−cscα
sin ( π 2 + α ) = cos α cos ( π 2 + α ) = − sin α tan ( π 2 + α ) = − cot α cot ( π 2 + α ) = − tan α sec ( π 2 + α ) = − csc α csc ( π 2 + α ) = sec α ‾ \underline{\begin{aligned} \sin \left( \frac{\pi}{2}+\alpha \right) &=\cos \alpha\\ \cos \left( \frac{\pi}{2}+\alpha \right) &=-\sin \alpha\\ \tan \left( \frac{\pi}{2}+\alpha \right) &=-\cot \alpha\\ \cot \left( \frac{\pi}{2}+\alpha \right) &=-\tan \alpha\\ \sec \left( \frac{\pi}{2}+\alpha \right) &=-\csc \alpha\\ \csc \left( \frac{\pi}{2}+\alpha \right) &=\sec \alpha\\ \end{aligned}} sin(2π+α)cos(2π+α)tan(2π+α)cot(2π+α)sec(2π+α)csc(2π+α)=cosα=−sinα=−cotα=−tanα=−cscα=secα
sin ( π 2 − α ) = cos α cos ( π 2 − α ) = sin α tan ( π 2 − α ) = cot α cot ( π 2 − α ) = tan α csc ( π 2 − α ) = sec α sec ( π 2 − α ) = csc α ‾ \underline{\begin{aligned} \sin \left( \frac{\pi}{2}-\alpha \right) &=\cos \alpha\\ \cos \left( \frac{\pi}{2}-\alpha \right) &=\sin \alpha\\ \tan \left( \frac{\pi}{2}-\alpha \right) &=\cot \alpha\\ \cot \left( \frac{\pi}{2}-\alpha \right) &=\tan \alpha\\ \csc \left( \frac{\pi}{2}-\alpha \right) &=\sec \alpha\\ \sec \left( \frac{\pi}{2}-\alpha \right) &=\csc \alpha\\ \end{aligned}} sin(2π−α)cos(2π−α)tan(2π−α)cot(2π−α)csc(2π−α)sec(2π−α)=cosα=sinα=cotα=tanα=secα=cscα
两角和公式(加法公式)[三组]
sin ( α + β ) = sin α cos β + cos α sin β \sin \left( \alpha +\beta \right) =\sin \alpha \cos \beta +\cos \alpha \sin \beta sin(α+β)=sinαcosβ+cosαsinβ
sin ( α − β ) = sin α cos β − cos α sin β \sin \left( \alpha -\beta \right) =\sin \alpha \cos \beta -\cos \alpha \sin \beta sin(α−β)=sinαcosβ−cosαsinβ
cos ( α + β ) = cos α cos β − sin α sin β \cos \left( \alpha +\beta \right) =\cos \alpha \cos \beta -\sin \alpha \sin \beta cos(α+β)=cosαcosβ−sinαsinβ
cos ( α − β ) = cos α cos β + sin α sin β \cos \left( \alpha -\beta \right) =\cos \alpha \cos \beta +\sin \alpha \sin \beta cos(α−β)=cosαcosβ+sinαsinβ
tan ( α + β ) = tan α + tan β 1 − tan α tan β \tan \left( \alpha +\beta \right) =\frac{\tan \alpha +\tan \beta}{1-\tan \alpha \tan \beta} tan(α+β)=1−tanαtanβtanα+tanβ
tan ( α − β ) = tan α − tan β 1 + tan α tan β \tan \left( \alpha -\beta \right) =\frac{\tan \alpha -\tan \beta}{1+\tan \alpha \tan \beta} tan(α−β)=1+tanαtanβtanα−tanβ
倍角公式
sin 2 α = 2 sin α cos α \sin 2\alpha =2\sin \alpha \cos \alpha sin2α=2sinαcosα
cos 2 α = cos 2 α − sin 2 α \cos 2\alpha =\cos ^2\alpha -\sin ^2\alpha cos2α=cos2α−sin2α
= 2 cos 2 α − 1 =2\cos ^2\alpha -1 =2cos2α−1
= 1 − 2 sin 2 α =1-2\sin ^2\alpha =1−2sin2α
tan 2 α = 2 tan α 1 − tan 2 α \tan 2\alpha =\frac{2\tan \alpha}{1-\tan ^2\alpha} tan2α=1−tan2α2tanα
三倍角公式
sin 3 α = 3 sin α − 4 sin 3 α \sin 3\alpha =3\sin \alpha -4\sin ^3\alpha sin3α=3sinα−4sin3α
cos 3 α = 4 cos 3 α − 3 cos α \cos 3\alpha =4\cos ^3\alpha -3\cos \alpha cos3α=4cos3α−3cosα
tan 3 α = tan α tan ( π 3 + α ) tan ( π 3 − α ) \tan 3\alpha =\tan \alpha \tan \left( \frac{\pi}{3}+\alpha \right) \tan \left( \frac{\pi}{3}-\alpha \right) tan3α=tanαtan(3π+α)tan(3π−α)
半角公式
sin 2 α 2 = 1 − cos α 2 \sin ^2\frac{\alpha}{2}=\frac{1-\cos \alpha}{2} sin22α=21−cosα
cos 2 α 2 = 1 + cos α 2 \cos ^2\frac{\alpha}{2}=\frac{1+\cos \alpha}{2} cos22α=21+cosα
tan α 2 = sin α 1 + cos α \tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha} tan2α=1+cosαsinα
和差化积
sin α + sin β = 2 sin α + β 2 ⋅ cos α − β 2 \sin \alpha +\sin \beta =2\sin \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2} sinα+sinβ=2sin2α+β⋅cos2α−β
sin α − sin β = 2 sin α − β 2 ⋅ cos α + β 2 \sin \alpha -\sin \beta =2\sin \frac{\alpha -\beta}{2}\cdot \cos \frac{\alpha +\beta}{2} sinα−sinβ=2sin2α−β⋅cos2α+β
cos α + cos β = 2 cos α + β 2 ⋅ cos α − β 2 \cos \alpha +\cos \beta =2\cos \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2} cosα+cosβ=2cos2α+β⋅cos2α−β
cos α − cos β = − 2 sin α + β 2 ⋅ sin α − β 2 \cos \alpha -\cos \beta =-2\sin \frac{\alpha +\beta}{2}\cdot \sin \frac{\alpha -\beta}{2} cosα−cosβ=−2sin2α+β⋅sin2α−β
积化和差
2 cos α cos β = cos ( α − β ) + cos ( α + β ) 2\cos \alpha \cos \beta =\cos \left( \alpha -\beta \right) +\cos \left( \alpha +\beta \right) 2cosαcosβ=cos(α−β)+cos(α+β)
2 sin α sin β = cos ( α + β ) − cos ( α + β ) 2\sin \alpha \sin \beta =\cos \left( \alpha +\beta \right) -\cos \left( \alpha +\beta \right) 2sinαsinβ=cos(α+β)−cos(α+β)
2 sin α cos β = sin ( α − β ) + sin ( α + β ) 2\sin \alpha \cos \beta =\sin \left( \alpha -\beta \right) +\sin \left( \alpha +\beta \right) 2sinαcosβ=sin(α−β)+sin(α+β)
万能公式(毕达哥拉斯恒等式)
第一恒等式: sin 2 α + cos 2 α = 1 \text{第一恒等式:}\sin ^2\alpha +\cos ^2\alpha =1 第一恒等式:sin2α+cos2α=1
第二恒等式: tan 2 α + 1 = sec 2 α \text{第二恒等式:}\tan ^2\alpha +1=\sec ^2\alpha 第二恒等式:tan2α+1=sec2α
第三恒等式: cot 2 α + 1 = csc 2 α \text{第三恒等式:}\cot ^2\alpha +1=\csc ^2\alpha 第三恒等式:cot2α+1=csc2α
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/157956.html