学习和计算时特别常用的三角公式

学习和计算时特别常用的三角公式角度与弧度换算 360 2 rad360 2 pi text rad 360 2 rad180 rad180 pi text rad 180 rad1 180 rad 0 0174

大家好,欢迎来到IT知识分享网。

前言

无论搞硬件还是搞软件,数学基础,都很重要,没有一定的数学基础,不管学的语言再多、会的芯片型号再多,也只能算皮毛;做算法的需要数学理论作为支撑,做芯片设计的也需要数理知识作为支撑,总之,对于我们理工科的人,核心的东西还是数学基础,比如三角函数的计算和变换在信号处理中就会经常碰到,有句话常说“代数烦、几何难,三角公式记不完”,三角公式再多,其本质还是通过最基本的公式推导出来的,这里给出常用的三角公式,希望可以帮到大家。

角度与弧度换算

360 ° = 2 π    rad 360°=2\pi \;\text{rad} 360°=2πrad

180 ° = π    rad 180°=\pi \;\text{rad} 180°=πrad

1 ° = π 180    rad ≈ 0.01745    rad 1°=\frac{\pi}{180}\;\text{rad}\approx 0.01745\;\text{rad} 1°=180πrad0.01745rad

1    rad = 180 ° π ≈ 57.30 ° 1\;\text{rad}=\frac{180°}{\pi}\approx 57.30° 1rad=π180°57.30°

定义式

img

正弦: sin ⁡ α = a c \text{正弦:}\sin \alpha =\frac{a}{c} 正弦:sinα=ca

余弦: cos ⁡ α = b c \text{余弦:}\cos \alpha =\frac{b}{c} 余弦:cosα=cb

正切: tan ⁡ α = a b \text{正切:}\tan \alpha =\frac{a}{b} 正切:tanα=ba

余切: cot ⁡ α = b a \text{余切:}\cot \alpha =\frac{b}{a} 余切:cotα=ab

正割: sec ⁡ α = c b \text{正割:}\sec \alpha =\frac{c}{b} 正割:secα=bc

余割: csc ⁡ α = c a \text{余割:}\csc \alpha =\frac{c}{a} 余割:cscα=ac

倒数关系:——————— \text{倒数关系:———————} 倒数关系:———————

cot ⁡ α = 1 tan ⁡ α \cot \alpha =\frac{1}{\tan \alpha} cotα=tanα1

sec ⁡ α = 1 cos ⁡ α \sec \alpha =\frac{1}{\cos \alpha} secα=cosα1

csc ⁡ α = 1 sin ⁡ α \csc \alpha =\frac{1}{\sin \alpha} cscα=sinα1

正弦定理

img
sin ⁡ A a = sin ⁡ B b = sin ⁡ C c = 1 2 R \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} asinA=bsinB=csinC=2R1

余弦定理

img
a 2 = b 2 + c 2 − 2 b c cos ⁡ A a^2=b^2+c^2-2bc\cos A a2=b2+c22bccosA

诱导公式(七组)

  • 奇变偶不变,符号看象限

sin ⁡ ( 2 k π + α ) = sin ⁡ α k ∈ Z cos ⁡ ( 2 k π + α ) = cos ⁡ α k ∈ Z tan ⁡ ( 2 k π + α ) = tan ⁡ α k ∈ Z cot ⁡ ( 2 k π + α ) = cot ⁡ α k ∈ Z sec ⁡ ( 2 k π + α ) = sec ⁡ α k ∈ Z csc ⁡ ( 2 k π + α ) = csc ⁡ α k ∈ Z ‾ \underline{\begin{matrix} \sin \left( 2k\pi +\alpha \right) &=\sin \alpha& k\in \mathbb{Z}\\ \cos \left( 2k\pi +\alpha \right) &=\cos \alpha& k\in \mathbb{Z}\\ \tan \left( 2k\pi +\alpha \right) &=\tan \alpha& k\in \mathbb{Z}\\ \cot \left( 2k\pi +\alpha \right) &=\cot \alpha& k\in \mathbb{Z}\\ \sec \left( 2k\pi +\alpha \right) &=\sec \alpha& k\in \mathbb{Z}\\ \csc \left( 2k\pi +\alpha \right) &=\csc \alpha& k\in \mathbb{Z}\\ \end{matrix}} sin(2kπ+α)cos(2kπ+α)tan(2kπ+α)cot(2kπ+α)sec(2kπ+α)csc(2kπ+α)=sinα=cosα=tanα=cotα=secα=cscαkZkZkZkZkZkZ

sin ⁡ ( π + α ) = − sin ⁡ α cos ⁡ ( π + α ) = − cos ⁡ α tan ⁡ ( π + α ) = tan ⁡ α cot ⁡ ( π + α ) = cot ⁡ α sec ⁡ ( π + α ) = − sec ⁡ α csc ⁡ ( π + α ) = − csc ⁡ α ‾ \underline{\begin{aligned} \sin \left( \pi +\alpha \right) &=-\sin \alpha\\ \cos \left( \pi +\alpha \right) &=-\cos \alpha\\ \tan \left( \pi +\alpha \right) &=\tan \alpha\\ \cot \left( \pi +\alpha \right) &=\cot \alpha\\ \sec \left( \pi +\alpha \right) &=-\sec \alpha\\ \csc \left( \pi +\alpha \right) &=-\csc \alpha\\ \end{aligned}} sin(π+α)cos(π+α)tan(π+α)cot(π+α)sec(π+α)csc(π+α)=sinα=cosα=tanα=cotα=secα=cscα

sin ⁡ ( − α ) = − sin ⁡ α cos ⁡ ( − α ) = cos ⁡ α tan ⁡ ( − α ) = − tan ⁡ α cot ⁡ ( − α ) = − cot ⁡ α sec ⁡ ( − α ) = sec ⁡ α csc ⁡ ( − α ) = − csc ⁡ α ‾ \underline{\begin{aligned} \sin \left( -\alpha \right) &=-\sin \alpha\\ \cos \left( -\alpha \right) &=\cos \alpha\\ \tan \left( -\alpha \right) &=-\tan \alpha\\ \cot \left( -\alpha \right) &=-\cot \alpha\\ \sec \left( -\alpha \right) &=\sec \alpha\\ \csc \left( -\alpha \right) &=-\csc \alpha\\ \end{aligned}} sin(α)cos(α)tan(α)cot(α)sec(α)csc(α)=sinα=cosα=tanα=cotα=secα=cscα

sin ⁡ ( π − α ) = sin ⁡ α cos ⁡ ( π − α ) = − cos ⁡ α tan ⁡ ( π − α ) = − tan ⁡ α cot ⁡ ( π − α ) = − cot ⁡ α sec ⁡ ( π − α ) = − sec ⁡ α csc ⁡ ( π − α ) = csc ⁡ α ‾ \underline{\begin{aligned} \sin \left( \pi -\alpha \right) &=\sin \alpha\\ \cos \left( \pi -\alpha \right) &=-\cos \alpha\\ \tan \left( \pi -\alpha \right) &=-\tan \alpha\\ \cot \left( \pi -\alpha \right) &=-\cot \alpha\\ \sec \left( \pi -\alpha \right) &=-\sec \alpha\\ \csc \left( \pi -\alpha \right) &=\csc \alpha\\ \end{aligned}} sin(πα)cos(πα)tan(πα)cot(πα)sec(πα)csc(πα)=sinα=cosα=tanα=cotα=secα=cscα

sin ⁡ ( 2 π − α ) = − sin ⁡ α cos ⁡ ( 2 π − α ) = cos ⁡ α tan ⁡ ( 2 π − α ) = − tan ⁡ α cot ⁡ ( 2 π − α ) = − cot ⁡ α sec ⁡ ( 2 π − α ) = sec ⁡ α csc ⁡ ( 2 π − α ) = − csc ⁡ α ‾ \underline{\begin{aligned} \sin \left( 2\pi -\alpha \right) &=-\sin \alpha\\ \cos \left( 2\pi -\alpha \right) &=\cos \alpha\\ \tan \left( 2\pi -\alpha \right) &=-\tan \alpha\\ \cot \left( 2\pi -\alpha \right) &=-\cot \alpha\\ \sec \left( 2\pi -\alpha \right) &=\sec \alpha\\ \csc \left( 2\pi -\alpha \right) &=-\csc \alpha\\ \end{aligned}} sin(2πα)cos(2πα)tan(2πα)cot(2πα)sec(2πα)csc(2πα)=sinα=cosα=tanα=cotα=secα=cscα

sin ⁡ ( π 2 + α ) = cos ⁡ α cos ⁡ ( π 2 + α ) = − sin ⁡ α tan ⁡ ( π 2 + α ) = − cot ⁡ α cot ⁡ ( π 2 + α ) = − tan ⁡ α sec ⁡ ( π 2 + α ) = − csc ⁡ α csc ⁡ ( π 2 + α ) = sec ⁡ α ‾ \underline{\begin{aligned} \sin \left( \frac{\pi}{2}+\alpha \right) &=\cos \alpha\\ \cos \left( \frac{\pi}{2}+\alpha \right) &=-\sin \alpha\\ \tan \left( \frac{\pi}{2}+\alpha \right) &=-\cot \alpha\\ \cot \left( \frac{\pi}{2}+\alpha \right) &=-\tan \alpha\\ \sec \left( \frac{\pi}{2}+\alpha \right) &=-\csc \alpha\\ \csc \left( \frac{\pi}{2}+\alpha \right) &=\sec \alpha\\ \end{aligned}} sin(2π+α)cos(2π+α)tan(2π+α)cot(2π+α)sec(2π+α)csc(2π+α)=cosα=sinα=cotα=tanα=cscα=secα

sin ⁡ ( π 2 − α ) = cos ⁡ α cos ⁡ ( π 2 − α ) = sin ⁡ α tan ⁡ ( π 2 − α ) = cot ⁡ α cot ⁡ ( π 2 − α ) = tan ⁡ α csc ⁡ ( π 2 − α ) = sec ⁡ α sec ⁡ ( π 2 − α ) = csc ⁡ α ‾ \underline{\begin{aligned} \sin \left( \frac{\pi}{2}-\alpha \right) &=\cos \alpha\\ \cos \left( \frac{\pi}{2}-\alpha \right) &=\sin \alpha\\ \tan \left( \frac{\pi}{2}-\alpha \right) &=\cot \alpha\\ \cot \left( \frac{\pi}{2}-\alpha \right) &=\tan \alpha\\ \csc \left( \frac{\pi}{2}-\alpha \right) &=\sec \alpha\\ \sec \left( \frac{\pi}{2}-\alpha \right) &=\csc \alpha\\ \end{aligned}} sin(2πα)cos(2πα)tan(2πα)cot(2πα)csc(2πα)sec(2πα)=cosα=sinα=cotα=tanα=secα=cscα

两角和公式(加法公式)[三组]

sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β \sin \left( \alpha +\beta \right) =\sin \alpha \cos \beta +\cos \alpha \sin \beta sin(α+β)=sinαcosβ+cosαsinβ

sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β \sin \left( \alpha -\beta \right) =\sin \alpha \cos \beta -\cos \alpha \sin \beta sin(αβ)=sinαcosβcosαsinβ

cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β \cos \left( \alpha +\beta \right) =\cos \alpha \cos \beta -\sin \alpha \sin \beta cos(α+β)=cosαcosβsinαsinβ

cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \cos \left( \alpha -\beta \right) =\cos \alpha \cos \beta +\sin \alpha \sin \beta cos(αβ)=cosαcosβ+sinαsinβ

tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α tan ⁡ β \tan \left( \alpha +\beta \right) =\frac{\tan \alpha +\tan \beta}{1-\tan \alpha \tan \beta} tan(α+β)=1tanαtanβtanα+tanβ

tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α tan ⁡ β \tan \left( \alpha -\beta \right) =\frac{\tan \alpha -\tan \beta}{1+\tan \alpha \tan \beta} tan(αβ)=1+tanαtanβtanαtanβ

倍角公式

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \sin 2\alpha =2\sin \alpha \cos \alpha sin2α=2sinαcosα

cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α \cos 2\alpha =\cos ^2\alpha -\sin ^2\alpha cos2α=cos2αsin2α

= 2 cos ⁡ 2 α − 1 =2\cos ^2\alpha -1 =2cos2α1

= 1 − 2 sin ⁡ 2 α =1-2\sin ^2\alpha =12sin2α

tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan 2\alpha =\frac{2\tan \alpha}{1-\tan ^2\alpha} tan2α=1tan2α2tanα

三倍角公式

sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α \sin 3\alpha =3\sin \alpha -4\sin ^3\alpha sin3α=3sinα4sin3α

cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \cos 3\alpha =4\cos ^3\alpha -3\cos \alpha cos3α=4cos3α3cosα

tan ⁡ 3 α = tan ⁡ α tan ⁡ ( π 3 + α ) tan ⁡ ( π 3 − α ) \tan 3\alpha =\tan \alpha \tan \left( \frac{\pi}{3}+\alpha \right) \tan \left( \frac{\pi}{3}-\alpha \right) tan3α=tanαtan(3π+α)tan(3πα)

半角公式

sin ⁡ 2 α 2 = 1 − cos ⁡ α 2 \sin ^2\frac{\alpha}{2}=\frac{1-\cos \alpha}{2} sin22α=21cosα

cos ⁡ 2 α 2 = 1 + cos ⁡ α 2 \cos ^2\frac{\alpha}{2}=\frac{1+\cos \alpha}{2} cos22α=21+cosα

tan ⁡ α 2 = sin ⁡ α 1 + cos ⁡ α \tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha} tan2α=1+cosαsinα

和差化积

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 ⋅ cos ⁡ α − β 2 \sin \alpha +\sin \beta =2\sin \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2} sinα+sinβ=2sin2α+βcos2αβ

sin ⁡ α − sin ⁡ β = 2 sin ⁡ α − β 2 ⋅ cos ⁡ α + β 2 \sin \alpha -\sin \beta =2\sin \frac{\alpha -\beta}{2}\cdot \cos \frac{\alpha +\beta}{2} sinαsinβ=2sin2αβcos2α+β

cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 ⋅ cos ⁡ α − β 2 \cos \alpha +\cos \beta =2\cos \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2} cosα+cosβ=2cos2α+βcos2αβ

cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 ⋅ sin ⁡ α − β 2 \cos \alpha -\cos \beta =-2\sin \frac{\alpha +\beta}{2}\cdot \sin \frac{\alpha -\beta}{2} cosαcosβ=2sin2α+βsin2αβ

积化和差

2 cos ⁡ α cos ⁡ β = cos ⁡ ( α − β ) + cos ⁡ ( α + β ) 2\cos \alpha \cos \beta =\cos \left( \alpha -\beta \right) +\cos \left( \alpha +\beta \right) 2cosαcosβ=cos(αβ)+cos(α+β)

2 sin ⁡ α sin ⁡ β = cos ⁡ ( α + β ) − cos ⁡ ( α + β ) 2\sin \alpha \sin \beta =\cos \left( \alpha +\beta \right) -\cos \left( \alpha +\beta \right) 2sinαsinβ=cos(α+β)cos(α+β)

2 sin ⁡ α cos ⁡ β = sin ⁡ ( α − β ) + sin ⁡ ( α + β ) 2\sin \alpha \cos \beta =\sin \left( \alpha -\beta \right) +\sin \left( \alpha +\beta \right) 2sinαcosβ=sin(αβ)+sin(α+β)

万能公式(毕达哥拉斯恒等式)

第一恒等式: sin ⁡ 2 α + cos ⁡ 2 α = 1 \text{第一恒等式:}\sin ^2\alpha +\cos ^2\alpha =1 第一恒等式:sin2α+cos2α=1

第二恒等式: tan ⁡ 2 α + 1 = sec ⁡ 2 α \text{第二恒等式:}\tan ^2\alpha +1=\sec ^2\alpha 第二恒等式:tan2α+1=sec2α

第三恒等式: cot ⁡ 2 α + 1 = csc ⁡ 2 α \text{第三恒等式:}\cot ^2\alpha +1=\csc ^2\alpha 第三恒等式:cot2α+1=csc2α


免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/157956.html

(0)
上一篇 2025-01-27 15:00
下一篇 2025-01-27 15:05

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信