滑模控制及其抗扰原理

滑模控制及其抗扰原理编者按 滑模控制是一种变结构控制 本质上是一类特殊的非线性控制 虽然滑模控制在数学上非常巧妙而优美 但它并不是完美无缺

大家好,欢迎来到IT知识分享网。

编者按:滑模控制(sliding mode control)是一种变结构控制,本质上是一类特殊的非线性控制。由于其对干扰和未建模动态具有很强的鲁棒性,因而被广泛应用到各种工业控制对象之中。但是,任何事物都有两面性,滑模控制只能利用干扰的有界性信息,可能存在其他干扰信息的浪费。信息的浪费意味着仍然存在进一步性能提升的空间,因此后续中我们将提出一种新的方法来弥补信息浪费这一缺陷。

滑模控制及其抗扰原理

滑模控制及其抗扰原理

滑模控制及其抗扰原理

滑模控制及其抗扰原理

虽然滑模控制在数学上非常巧妙而优美,但它并不是完美无缺。在实际问题中,状态轨迹很难严格维持在滑模面上,多数情况是来回摆动地趋近滑模面,从而产生了抖振。这是滑模控制在实际应用中的主要障碍。尽管如此,滑模控制可以处理的干扰仍然非常广泛,理论上仅仅假设干扰有界即可。这说明滑模控制对干扰有非常强的鲁棒性。然而任何事物都有两面性,另一方面,这说明滑模控制只能利用干扰的有界性信息,可能存在其他干扰信息的浪费。实际应用中,人们常常还会掌握干扰的其它信息,例如: 周期性、光滑性、频率以及动态信息等。

滑模控制及其抗扰原理

———本文完———-

本文编辑:郎培华

往期精彩:

英文赏析04
MIT(麻省理工)线性代数课程17
对于给定的区间[a,b],如何判断其中是否存在素数?
一页纸告诉你什么是卡尔曼滤波
素数总可以由某个多项式给出吗?
香农熵(Shannon entropy)公式

控制系统的所有性质在可逆线性变换下仍保持不变吗?

一个奇妙的数论问题:完全数

Luenberger 观测器和分离性原理

动态反馈的优越性

Hurwitz矩阵和耗散矩阵是等价的吗?

中国剩余问题

高增益与干扰抑制

听院士报告–数学的春天来了,机遇在哪里?

中国—芬兰联合课程06—数值仿真

证明开普勒三大定律

内模原理与输出调节

闲聊黎曼几何

自抗扰控制举例

一个神秘的常数

关于控制学科发展的若干思考

PID 控制浅谈

什么是卡尔曼滤波?

卡塔兰猜想与柯召

波动方程的Matlab数值模拟

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/161001.html

(0)
上一篇 2025-01-13 16:05
下一篇 2025-01-13 16:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信