常见的九种大数据分析模型

常见的九种大数据分析模型文章详细介绍了九种大数据分析模型 包括事件分析 属性分析 渠道分析 Session 分析 留存分析 归因分析 漏斗分析 路径分析和分布分析 这些模型主要用于理解用户行为 评估渠道效果 优化业务流程 提升用户体验 并帮助决策者制定策略

大家好,欢迎来到IT知识分享网。

1、【事件分析】
事件分析,是指用户在 APP、网站等应用上发生的行为,即何人,何时,何地,通过何种方式,做了什么事。
事件分析模型主要用于分析用户在应用上的行为,比如打开 APP、注册、登录、支付订单等。通过触发用户数、触发次数、访问时长等基础指标度量用户行为,同时也支持指标运算,构建复杂的指标衡量业务过程。
那么,事件分析模型能够解决哪些问题呢?
例如:
监测产品每天的用户数、访问次数、使用时长;趋势是否发生了变化?
引起变化的因素有哪些?
北京地区的用户和上海地区的用户,购买家电品类的金额分布差异在哪里?
今天在产品中发起了一个话题,各个时段用户的参与情况如何?
最近半年付费用户数和 ARPU 值是多少?








事件分析模型能够实时监测用户在不同平台的用户行为,通过不同维度归因指标变化因素,还能通过自定义指标组合成新的指标实现更为强大的分析能力。

在这里插入图片描述

2、【属性分析】
属性分析是基于用户自定义属性或预置属性的占比分析,能够按照不同的属性来统计用户数等指标的属性占比,进而得到初步的分析结论。例如,通过对性别属性的用户数占比分析,我们可以快速得到不同性别的用户数统计结果。

通过属性分析,可以快速查看在不同属性上的用户数分布情况,便于统计不同特征的用户总量,在使用属性分析的过程中,需要合理选择度量方式,常用的度量方式包括:用户数、去重数、总和、最大值、最小值、均值等。

例如:我们选择的指标为“累计消费金额的均值”,维度为“会员等级”,用户选择“所有用户”,那么我们得到的结果是“所有不同会员等级用户的平均消费金额是多少”。

属性分析模型同事件分析模型类似,可以进行多维度多用户之间的对比、多种图表形式展示统计结果。在有标签功能的场景下,还可以对不同版本标签的统计对比分析。

在这里插入图片描述

3、【渠道分析】

渠道,即企业(产品)与用户产生互动的各个触点,比如搜索引擎、社交媒体、广告平台、线下站会等等。

渠道分析模型用于分析用户(包括访客)的访问来源,通过访问用户数、访问次数、访问时长、跳出率等基础指标评估渠道质量,同时也支持自定义转化目标衡量渠道的转化效果。

渠道分析模型通过定义基础指标和转化指标、选择分析平台、渠道维度,就能够清晰地呈现各渠道表现,从而评估不同渠道的实际产出效果,最终选择优质渠道组合,提高整体ROI。

在这里插入图片描述
4、【Session分析】
Session,即会话,是指在指定的时间段内在网站/H5/小程序/APP上发生的一系列用户行为的集合。
例如,一次会话可以包含多个页面浏览、交互事件等。Session 是具备时间属性的,根据不同的切割规则,可以生成不同长度的 Session。


Session分析模型含多种度量 Session 访问质量的指标,包括访问次数、人均访问次数、总访问时长、单次访问时长、单次访问深度、跳出次数、跳出率、退出次数、退出率、人均访问时长、总页面停留时长、平均页面停留时长。

在这里插入图片描述
不同于事件分析,Session 分析中额外支持了一些维度的细分,以满足特定场景下针对 Session 分析的需求,包括:

同事件分析类似,Session 分析也支持多指标、多维度和多过滤条件,同时也支持多用户分群之间的横向对比。同时在 Session 分析中,还支持按照日、周、月三种不同粒度来进行统计分析,用户可以根据查询数据的时间跨度来选择合适的粒度进行分析。

5、【留存分析 】
留存分析 留存是指用户在 APP、网站等应用上使用过,并一段时间后仍有使用。

留存分析模型是一种衡量用户健康度/参与度的方法,超越下载量、DAU 等指标,深入了解用户的留存和流失状况,发现影响产品可持续增长的关键因素,指导市场决策、产品改进、提升用户价值等。

留存分析模型支持条件过滤和多人群的对比分析,支持对全量数据随机抽样计算。同时我们还可以通过留存分析判断新用户在几天、几周、几月后是否愿意回来使用你的功能,还可自定义初始行为和结束行为进行功能留存分析。

在这里插入图片描述
留存是基于某个用户群体的初始行为时间来计算的,描述发生了某个行为的同期群,在一段时间后是否发生了期望的行为。初始行为和后续行为均可以是任意事件或者某个具体的事件。

6、【归因分析】
归因分析 在做运营活动时,我们可能会在产品内的多个运营位上投放活动素材,试图在用户与产品交互过程中的各个触点上,吸引用户的注意力,引导流量走向和用户行为,促成最终转化。此外,用户本身可能还会通过搜索、内容推荐等触点获取信息,这些触点对用户是否能达成转化也发挥着重要作用。
也就是说,在用户转化路径上,站内的众多触点都参与了对用户的劝说和引导,影响了用户的最终决策。那么,对比各个用户触点,它们对关键指标的达成分别贡献了多大力量,是否都如运营人员所预期的那样,具有优秀的转化能力;亦或者,存在被低估的情况?在之后的运营中,该如何调整对各运营位资源投入的权重分配?

7、【路径分析】
路径分析 路径是指用户在应用中使用的行为轨迹。在产品运营过程中,无论是产品、运营还是市场团队都希望能够清晰地了解用户行为路径,来验证运营思路、指导产品迭代优化,达到用户增长、转化的最终目的。

8、【漏斗分析】
漏斗分析,是分析用户使用某项业务时,经过一系列步骤转化效果的方法。漏斗分析模型能够灵活自定义多步骤之间的转化过程,找到关键流失环节及影响因素,进而分析用户行为进行针对性优化动作。

在这里插入图片描述
官网流量很大,但注册用户很少,是过程中哪个环节出了问题?
用户从“注册 – 绑卡 – 提交订单 – 支付订单” 总体转化率如何?
不同地区的用户支付转化率有什么差异?
两个推广渠道带来了不同的用户,哪个渠道的注册转化率高?
上周针对注册环节的问题做了一次优化,转化率趋势是否有提升?




在理想情况下,用户会沿着产品设计的路径到达最终目标事件,但实际情况是用户行为路径是多种多样的。通过埋点事件配置关键业务路径,可以分析多种业务场景下转化和流失的情况,我们不仅找出产品潜在问题的位置,还可以定位每个环节流失用户,进而定向营销促转化。

9、【分布分析】
分布分析主要能够提供「维度指标化」之后的数据分解能力,将原有维度按照一定的数值区间进行维度划分,进而分析每个维度区间的分布情况,在以下分析场景中十分常见:分析订单的金额分布、分析某类特殊事件的发生时段分布、分析某类特殊事件的发生次数分布、分析触发某类事件的用户年龄分布。

在这里插入图片描述
由此可见,分布分析主要针对的是数值型和日期型这两类属性,如金额、年龄、时间、频次,因此当用户打点上传的数据中包括这两类属性时,那么在日常的分析中就有可能会使用分布分析来解决一些特定问题。常用指标有:X 事件的次数分布、X 事件的活跃时段分布、X 事件的活跃天数分布、X 事件 Y 属性的总和/均值/人均值等分布。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/117375.html

(0)
上一篇 2025-11-21 16:15
下一篇 2025-11-21 16:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信