报童模型( The Newsvendor Problem)及其拓展(加入惩罚成本)

报童模型( The Newsvendor Problem)及其拓展(加入惩罚成本)报童模型及其拓展 加入惩罚成本 报童模型

大家好,欢迎来到IT知识分享网。

1报童模型的定义和阐述

每天早上,报童以批发价 c c c元/份采购当天的报纸,然后以零售价 p p p元/份售卖。如果当天报纸没有卖完,则以 s s s元/份的价格卖给废品回收站。不失一般性,假设 p > c > s p > c > s p>c>s。用随机变量 D D D表示当天的需求量,并已知其概率分布函数和密度分布函数分别为 F ( d ) 和 f ( d ) F(d)和f(d) F(d)f(d)。求使得期望收益最大的采购量 x x x

拓展:未满足需要将支付惩罚成本 r r r

2求解过程

推导可得:
m a x ( x , D ) + m i n ( x , D ) = x + D ; m i n ( x , 0 ) = − m a x ( − x , 0 ) max(x,D)+min(x,D)=x+D; min(x,0)=-max(-x,0) max(x,D)+min(x,D)=x+D;min(x,0=max(x,0)

2.1利润函数

拓展的利润函数求解:
π ( x , D ) π(x,D) π(x,D)
= p ⋅ m i n ( x , D ) + s ⋅ m a x ( x − D , 0 ) − r ⋅ m a x ( D − x , 0 ) − c ⋅ x =p⋅min(x,D)+s⋅max(x−D,0)-r⋅max(D-x,0)-c⋅x =pmin(x,D)+smax(xD,0)rmax(Dx,0)cx
= p ⋅ m i n ( x , D ) + s ⋅ [ m a x ( x , D ) − D ] − r ⋅ [ − m i n ( x − D , 0 ) ] − c ⋅ x =p⋅min(x,D)+s⋅[max(x,D)−D]−r⋅[-min(x-D,0)]-c⋅x =pmin(x,D)+s[max(x,D)D]r[min(xD,0)]cx
= p ⋅ m i n ( x , D ) + s ⋅ [ x + D − m i n ( x , D ) − D ] − r ⋅ [ − m i n ( x , D ) + D ] − c ⋅ x =p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[-min(x,D)+D]−c⋅x =pmin(x,D)+s[x+Dmin(x,D)D]r[min(x,D)+D]cx
= p ⋅ m i n ( x , D ) + s ⋅ [ x + D − m i n ( x , D ) − D ] − r ⋅ [ m a x ( x , D ) − x − D + D ] − c ⋅ x =p⋅min(x,D)+s⋅[x+D−min(x,D)−D]-r⋅[max(x,D)-x-D+D]−c⋅x =pmin(x,D)+s[x+Dmin(x,D)D]r[max(x,D)xD+D]cx
= ( p − s ) ⋅ m i n ( x , D ) − r ⋅ m a x ( x , D ) − ( c − s − r ) ⋅ x =(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x =(ps)min(x,D)rmax(x,D)(csr)x





2.2期望利润函数

拓展的期望利润函数:
E [ π ( x , D ) ] E[π(x,D)] E[π(x,D)]
= ( p − s ) ⋅ m i n ( x , D ) − r ⋅ m a x ( x , D ) − ( c − s − r ) ⋅ x =(p−s)⋅min(x,D)-r⋅max(x,D)−(c−s-r)⋅x =(ps)min(x,D)rmax(x,D)(csr)x
= ( p − s ) ∫ 0 ∞ m i n ( x , d ) f ( d ) d d   − r ∫ 0 ∞ m a x ( x , d ) f ( d ) d d   − ( c − s − r ) ⋅ x . = (p-s)\int_0^\infty min(x,d)f(d)dd\,-r\int_0^\infty max(x,d)f(d)dd\,−(c−s-r)⋅x. =(ps)0min(x,d)f(d)ddr0max(x,d)f(d)dd(csr)x.


2.3求解期望收益最大时的采购量

为使原函数期望收益最大,对期望收益求采购量的偏导,并令其值为 0 0 0,即

∂ E [ π ( x , D ) ] ∂ x = 0 \frac{∂ E [ π ( x , D ) ] }{∂ x} = 0 xE[π(x,D)]=0

∂ E [ π ( x , D ) ] ∂ x \frac{∂ E [ π ( x , D ) ] }{∂ x} xE[π(x,D)]

= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 ∞ m i n ⁡ ( x , d ) f ( d ) d d   ) − ( c − s ) = ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ⁡ ( x , d ) f ( d ) d d\, ) − ( c − s ) =(ps)x(0min(x,d)f(d)dd)(cs)
= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 x d ⋅ f ( d ) d d + ∫ x ∞ x ⋅ f ( d ) d d ) − ( c − s ) = ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d ) − ( c − s ) =(ps)x(0xdf(d)dd+xxf(d)dd)(cs)
= ( p − s ) ⋅ [ ∫ 0 x ∂ ( d ⋅ f ( d ) ) ∂ x d d + ∫ x ∞ ∂ ( x ⋅ f ( d ) ) ∂ x d d ] − ( c − s ) = ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s ) =(ps)[0xx(df(d))dd+xx(xf(d))dd](cs)
= ( p − s ) ⋅ ∫ x ∞ f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − ( c − s ) = ( p − s ) ⋅ \int_x^\infty f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − ( c − s ) =(ps)xf(d)dd(cs)=(ps)[1F(x)](cs)

显然,上式 = 0 =0 =0时, F ( x ) = p − c p − s = γ F(x)=\frac{p−c}{p−s}=γ F(x)=pspc=γ,则

x = F − 1 ( γ ) x=F^{-1}(γ) x=F1(γ)

同理,我们使拓展利润函数期望收益最大:

∂ E [ π ( x , D ) ] ∂ x = 0 \frac{∂ E [ π ( x , D ) ] }{∂ x}=0 xE[π(x,D)]=0

= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 ∞ m i n ⁡ ( x , d ) f ( d ) d d   ) − r ⋅ ∂ ∂ x ( ∫ 0 ∞ m a x ( x , d ) f ( d ) d d   ) − ( c − s − r ) = ( p − s ) ⋅ \frac{∂} {∂x} ( \int_0^\infty min ⁡ ( x , d ) f ( d ) d d\, ) -r⋅\frac{∂} {∂x} ( \int_0^\infty max(x,d)f(d)dd\, ) − ( c − s -r) =(ps)x(0min(x,d)f(d)dd)rx(0max(x,d)f(d)dd)(csr)
= ( p − s ) ⋅ ∂ ∂ x ( ∫ 0 x d ⋅ f ( d ) d d + ∫ x ∞ x ⋅ f ( d ) d d   ) − r ⋅ ∂ ∂ x ( ∫ 0 x x ⋅ f ( d ) d d + ∫ x ∞ d ⋅ f ( d ) d d ) − ( c − s − r ) = ( p − s ) ⋅ \frac{∂} {∂x} (\int_0^x d ⋅ f ( d ) d d +\int_x^\infty x ⋅ f ( d ) d d \, )-r ⋅ \frac{∂} {∂x} (\int_0^x x⋅ f ( d ) d d +\int_x^\infty d ⋅ f ( d ) d d ) − ( c − s-r ) =(ps)x(0xdf(d)dd+xxf(d)dd)rx(0xxf(d)dd+xdf(d)dd)(csr)
= ( p − s ) ⋅ [ ∫ 0 x ∂ ( d ⋅ f ( d ) ) ∂ x d d + ∫ x ∞ ∂ ( x ⋅ f ( d ) ) ∂ x d d ] − r ⋅ [ ∫ 0 x ∂ ( x ⋅ f ( d ) ) ∂ x d d + ∫ x ∞ ∂ ( d ⋅ f ( d ) ) ∂ x d d ] − ( c − s − r ) = ( p − s ) ⋅ [ \int_0^x \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d ] -r ⋅ [ \int_0^x \frac{∂ ( x ⋅ f ( d ) ) }{∂ x} d d +\int_x^\infty \frac{∂ ( d ⋅ f ( d ) ) }{∂ x} d d ] − ( c − s-r ) =(ps)[0xx(df(d))dd+xx(xf(d))dd]r[0xx(xf(d))dd+xx(df(d))dd](csr)
= ( p − s ) ⋅ ∫ x ∞ f ( d ) d d − r ⋅ ∫ 0 x f ( d ) d d − ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] − r ⋅ F ( x ) − ( c − s − r ) = ( p − s ) ⋅ \int_x^\infty f ( d ) d d-r ⋅ \int_0^x f ( d ) d d− ( c − s ) = ( p − s ) ⋅ [ 1 − F ( x ) ] – r ⋅ F(x) − ( c − s-r ) =(ps)xf(d)ddr0xf(d)dd(cs)=(ps)[1F(x)]rF(x)(csr)

显然,上式 = 0 =0 =0时, F ( x ) = p − c + r p − s + r = γ F(x)=\frac{p−c+r}{p−s+r}=γ F(x)=ps+rpc+r=γ,则 x = F − 1 ( γ ) x=F^{-1}(γ) x=F1(γ)

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/119086.html

(0)
上一篇 2025-11-08 08:33
下一篇 2025-11-08 09:00

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信