大家好,欢迎来到IT知识分享网。
目录
3. 构建数据配置文档,需要注意 YOLOv5目录需要和datasets目录同级。
一、数据集准备
数据集下载地址:https://github.com/YimianDai/sirst
1. 需要将数据集转换为YOLO所需要的txt格式
参考链接:https://github.com/pprp/voc2007_for_yolo_torch
1.1 检测图片及其xml文件
import os, shutil def checkPngXml(dir1, dir2, dir3, is_move=True): """ dir1 是图片所在文件夹 dir2 是标注文件所在文件夹 dir3 是创建的,如果图片没有对应的xml文件,那就将图片放入dir3 is_move 是确认是否进行移动,否则只进行打印 """ if not os.path.exists(dir3): os.mkdir(dir3) cnt = 0 for file in os.listdir(dir1): f_name,f_ext = file.split(".") if not os.path.exists(os.path.join(dir2, f_name+".xml")): print(f_name) if is_move: cnt += 1 shutil.move(os.path.join(dir1,file), os.path.join(dir3, file)) if cnt > 0: print("有%d个文件不符合要求,已打印。"%(cnt)) else: print("所有图片和对应的xml文件都是一一对应的。") if __name__ == "__main__": dir1 = r"dataset/images/images" # 修改为自己的图片路径 dir2 = r"dataset/masks/masks" # 修改为自己的图片路径 dir3 = r"dataset/Allempty" # 修改为自己的图片路径 checkPngXml(dir1, dir2, dir3, False)
1.2 划分训练集
import os import random import os, fnmatch trainval_percent = 0.8 train_percent = 0.8 xmlfilepath = r"dataset/masks/masks" txtsavepath = r"dataset" total_xml = fnmatch.filter(os.listdir(xmlfilepath), '*.xml') print(total_xml) num=len(total_xml) list=range(num) tv=int(num*trainval_percent) tr=int(tv*train_percent) trainval= random.sample(list,tv) train=random.sample(trainval,tr) ftrainval = open('dataset/trainval.txt', 'w') ftest = open('dataset/test.txt', 'w') ftrain = open('dataset/train.txt', 'w') fval = open('dataset/val.txt', 'w') for i in list: name=total_xml[i][:-4]+'\n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name) else: fval.write(name) else: ftest.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close()
1.3 转为txt标签
# -*- coding: utf-8 -*- """ 需要修改的地方: 1. sets中替换为自己的数据集 2. classes中替换为自己的类别 3. 将本文件放到VOC2007目录下 4. 直接开始运行 """ import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')] #替换为自己的数据集 classes = ["Target"] #修改为自己的类别 def convert(size, box): dw = 1./(size[0]) dh = 1./(size[1]) x = (box[0] + box[1])/2.0 y = (box[2] + box[3])/2.0 w = box[1] - box[0] h = box[3] - box[2] x = x*dw w = w*dw y = y*dh h = h*dh return (x,y,w,h) def convert_annotation(year, image_id): in_file = open('dataset/masks/masks/%s.xml'%(image_id)) #将数据集放于当前目录下 out_file = open('dataset/labels/%s.txt'%(image_id), 'w') tree=ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) print(w,h) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) print(cls_id) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w,h), b) print(bb) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() for year, image_set in sets: if not os.path.exists('dataset/labels/'): os.makedirs('dataset/labels/') image_ids = open('dataset/%s.txt'%(image_set)).read().strip().split() list_file = open('%s_%s.txt'%(year, image_set), 'w') for image_id in image_ids: list_file.write('dataset/images/images/%s.png\n'%(image_id)) convert_annotation(year, image_id) list_file.close() # os.system("cat 2007_train.txt 2007_val.txt > train.txt") #修改为自己的数据集用作训练
1.4 构造数据集
import os, shutil """ 需要满足以下条件: 1. 在JPEGImages中准备好图片 2. 在labels中准备好labels 3. 创建好如下所示的文件目录: - images - train2014 - val2014 - labels(由于voc格式中有labels文件夹,所以重命名为label) - train2014 - val2014 """ def make_for_torch_yolov3(dir_image, dir_label, dir1_train, dir1_val, dir2_train, dir2_val, main_trainval, main_test): if not os.path.exists(dir1_train): os.mkdir(dir1_train) if not os.path.exists(dir1_val): os.mkdir(dir1_val) if not os.path.exists(dir2_train): os.mkdir(dir2_train) if not os.path.exists(dir2_val): os.mkdir(dir2_val) with open(main_trainval, "r") as f1: for line in f1: print(line[:-1]) # print(os.path.join(dir_image, line[:-1]+".png"), os.path.join(dir1_train, line[:-1]+".png")) shutil.copy(os.path.join(dir_image, line[:-1]+".png"), os.path.join(dir1_train, line[:-1]+".png")) shutil.copy(os.path.join(dir_label, line[:-1]+".txt"), os.path.join(dir2_train, line[:-1]+".txt")) with open(main_test, "r") as f2: for line in f2: print(line[:-1]) shutil.copy(os.path.join(dir_image, line[:-1]+".png"), os.path.join(dir1_val, line[:-1]+".png")) shutil.copy(os.path.join(dir_label, line[:-1]+".txt"), os.path.join(dir2_val, line[:-1]+".txt")) if __name__ == "__main__": ''' https://github.com/ultralytics/yolov3 这个pytorch版本的数据集组织 - images - train2014 # dir1_train - val2014 # dir1_val - labels - train2014 # dir2_train - val2014 # dir2_val trainval.txt, test.txt 是由create_main.py构建的 ''' dir_image = r"dataset/images/images" dir_label = r"dataset/labels" dir1_train = r"dataset/image/train2014" dir1_val = r"dataset/image/val2014" dir2_train = r"dataset/label/train2014" dir2_val = r"dataset/label/val2014" main_trainval = r"dataset/trainval.txt" main_test = r"dataset/test.txt" make_for_torch_yolov3(dir_image, dir_label, dir1_train, dir1_val, dir2_train, dir2_val, main_trainval, main_test)
最终数据集格式如下:
2. 构造训练所需要的数据集
根据以上数据集 需要单独构建一个datasets文件夹,存放标签和图像,具体格式如下:
可以参考该链接:https://github.com/ultralytics/yolov5/issues/7389
3. 构建数据配置文档,需要注意 YOLOv5目录需要和datasets目录同级。
命名为hongwai.yaml
# YOLOv3 🚀 by Ultralytics, AGPL-3.0 license # COCO 2017 dataset http://cocodataset.org by Microsoft # Example usage: python train.py --data coco.yaml # parent # ├── yolov5 # └── datasets # └── coco ← downloads here (20.1 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/coco # dataset root dir train: images/train2014 # train images (relative to 'path') images val: images/val2014 # val images (relative to 'path') 5000 images test: images/val2014 # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 # Classes nc: 1 names: 0: Target
二、矩池云配置环境
1. 租用环境
2、 配置环境,缺啥配啥,耐心解决问题
参考命令:
git clone https://github.com/ultralytics/yolov3.git
cd yolov3 pip install -r requirements.txt
也许训练过程中还会报错找不到module,根据module名字,使用pip安装即可
三、训练
YOLOv5训练命令:
python train.py --data data/hongwai.yaml --weights '' --cfg yolov5s.yaml --img 640 --device 0
YOLOv3训练命令:
python train.py --data data/hongwai.yaml --weights '' --cfg yolov3.yaml --img 640 --device 0
训练结果部分展示:
四、文件夹检测
执行命令:
python detect.py --weights runs/train/exp10/weights/best.pt --source dataset/image/val2014
结果保存位置:
【创造不易,需要指导做该项目的可以联系】
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/122152.html