图像处理:推导三种边缘检测算法(Sobel,FFT,FHT)

图像处理:推导三种边缘检测算法(Sobel,FFT,FHT)之前写的推导 Canny 边缘检测算法得到了大家的认可 我也是第一次拿到了双榜第一的成绩 给了我很大的鼓励

大家好,欢迎来到IT知识分享网。

目录

概述

Sobel算子

FFT算子

Numpy中的傅里叶变换

OpenCV中的傅里叶变换

FHT算子

 最后的评估


概述

        之前写的推导Canny边缘检测算法得到了大家的认可,我也是第一次拿到了双榜第一的成绩,给了我很大的鼓励。传统的检测算法在工业当中用处也颇多,由于学习的需要,我才在之前推导了Canny边缘检测的算法,它也是我最常用的一种,它的效果确实是较其他几种要好一点。所以这篇的目的是为了,学习其他的几种边缘检测的方法,并与Canny算法进行比较,来评估一下这几种算法实现效果的差异,并得到一个在什么样的条件下,使用哪种算法最好。

 

Sobel算子

        它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量

Sobel卷积因子为:

cbc60ea4e3734154936841a5d599358c.png

该算子包含两组3*3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx与Gy分别代表横向及纵向边缘的图像灰度值,其公式如下:

484c635a57df4b48b86844a71e8b88c2.png

 具体的计算,请看下面:

Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)+(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y)+(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)

= [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]

 

Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)+0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)+(-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)

= [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)]

其中f(a,b),表示图像(a,b)点的灰度值;

图像的每一个像素的横向及纵向灰度通过以下公式结合,来计算该点灰度的大小:

a9b842c7a8a742fdbb95fdf66a691daf.png

通常,为了提高效率,用不开方的近似值:

9304984914684ccd811df8a339c24165.png

如果,梯度G大于某一阈值,则认为该点(x,y)为边缘点。

最后,用下面的式子来计算梯度方向:

0e2cff645d884cec97cf57ae1e64ce8f.png

Sobel算子根据像素点上下、左右邻近点灰度加权差,在边缘处达到极限这一现象来检测边缘。对噪声具有平滑的作用,提供较为精准的边缘方向信息,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。

 

FFT算子

快速傅里叶变换FFT是离散性傅里叶变换DFT的一种快速检测方法,一般工程应用时,用的就是这种。

  • Numpy中的傅里叶变换

首先,我们将看看如何使用Numpy查找傅立叶变换。Numpy具有FFT软件包来执行此操作。

np.fft.fft2()为我们提供了频率的转换,它将是一个复杂的数组。它的第一个参数是输入图像,即灰度图像。第二个参数是可选的,它决定输出数组的大小。如果它大于输入图像的大小,则在计算FFT之前用零填充输入图像。如果小于输入图像,将裁切输入图像。如果未传递任何参数,则输出数组的大小将与输入的大小相同。

现在,一旦获得结果,零频率分量(DC分量)将位于左上角。如果要使其居中,则需要在两个方向上将结果都移动N/2。只需通过函数np.fft.fftshift()即可完成。(它更容易分析)。找到频率变换后,就可以找到幅度谱。

import cv2 as cv import numpy as np from matplotlib import pyplot as plt img = cv.imread('Images/rgblena.jpg',0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) magnitude_spectrum = 20*np.log(np.abs(fshift)) plt.subplot(121),plt.imshow(img, cmap = 'gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show()

880ab8f6362f4eddb79bd065314bf426.png

看,你可以在中心看到更多白色区域,这表明低频内容更多。

因此,发现了频率变换到现在,你可以在频域中进行一些操作,例如高通滤波和重建图像,即找到逆DFT。为此,您只需用尺寸为60×60的矩形窗口遮罩即可消除低频。然后,使用np.fft.ifftshift()应用反向移位,以使DC分量再次出现在左上角。然后使用np.ifft2()函数找到逆FFT。同样,结果将是一个复数。你可以采用其绝对值。

import cv2 as cv import numpy as np from matplotlib import pyplot as plt img = cv.imread('Images/rgblena.jpg',0) f = np.fft.fft2(img) fshift = np.fft.fftshift(f) rows, cols = img.shape crow,ccol = rows//2 , cols//2 fshift[crow-30:crow+31, ccol-30:ccol+31] = 0 f_ishift = np.fft.ifftshift(fshift) img_back = np.fft.ifft2(f_ishift) img_back = np.real(img_back) plt.subplot(131),plt.imshow(img, cmap = 'gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(132),plt.imshow(img_back, cmap = 'gray') plt.title('Image after HPF'), plt.xticks([]), plt.yticks([]) plt.subplot(133),plt.imshow(img_back) plt.title('Result in JET'), plt.xticks([]), plt.yticks([]) plt.show() 

efac438a0cdc4c1f855822be5469720b.png

 

  • OpenCV中的傅里叶变换

OpenCV为此提供了cv.dft()和cv.idft()函数。它返回与前一个相同的结果,但是有两个通道。第一个通道是结果的实部,第二个通道是结果的虚部。输入图像首先应转换为np.float32。我们来看看怎么做。

import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread('Images/rgblena.jpg',0) dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20*np.log(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1])) plt.subplot(121),plt.imshow(img, cmap = 'gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show()

435006f248c049538a9bb57a90dee7c9.png

 

还可以使用cv.cartToPolar(),它在单个镜头中同时返回幅值和相位

现在我们要做DFT的逆变换。在上一节中,我们创建了一个HPF,这次我们将看到如何删除图像中的高频内容,即我们将LPF应用到图像中。它实际上模糊了图像。为此,我们首先创建一个高值(1)在低频部分,即我们过滤低频内容,0在高频区。

import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('Images/rgblena.jpg',0) dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) rows, cols = img.shape crow,ccol = rows/2 , cols/2 # create a mask first, center square is 1, remaining all zeros mask = np.zeros((rows,cols,2),np.uint8) mask[int(crow-30):int(crow+30), int(ccol-30):int(ccol+30)] = 1 # apply mask and inverse DFT fshift = dft_shift*mask f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1]) plt.subplot(121),plt.imshow(img, cmap = 'gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(img_back, cmap = 'gray') plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([]) plt.show() 

6fc2ffb1162e4754a747679578db77f7.png

通常,OpenCV函数cv.dft()和cv.idft()比Numpy函数更快。但是Numpy函数更容易使用。那么关于性能方面我们就不做过多的分析。

 

FHT算子

dcc1296bb26143c8afc60382d126ab39.jpeg

 在这里,我只找到了源代码:

来自这个博主:(1条消息) 哈尔(Haar)小波变换的原理及opencv源代码_kuweicai的博客-CSDN博客_haar函数

// verified on opencv4.2.0 # include<opencv.hpp> # include<iostream> using namespace std; using namespace cv; int main() { Mat img = imread("Lena.jpg", cv::IMREAD_GRAYSCALE); int width = img.cols; int height = img.rows; int depth = 2; int depthcount = 1; Mat tmp = Mat::ones(img.size(), CV_32FC1); Mat wavelet = Mat::ones(img.size(), CV_32FC1); Mat imgtmp = img.clone(); imshow("src", imgtmp); imgtmp.convertTo(imgtmp, CV_32FC1, 1.0 / 255); while (depthcount <= depth) { height = img.rows / depthcount; width = img.cols / depthcount; //calculate horizen for (int i = 0; i < height; i++) //row { for (int j = 0; j < width / 2; j++) // col { tmp.at<float>(i, j) = (imgtmp.at<float>(i, 2 * j) + imgtmp.at<float>(i, 2 * j + 1)) / 2; //mean tmp.at<float>(i, j + width / 2) = (imgtmp.at<float>(i, 2 * j) - imgtmp.at<float>(i, 2 * j + 1)) / 2; //diff } } // calculate vertical for (int i = 0; i < height / 2; i++) { for (int j = 0; j < width; j++) { wavelet.at<float>(i, j) = (tmp.at<float>(2 * i, j) + tmp.at<float>(2 * i + 1, j)) / 2; wavelet.at<float>(i + height / 2, j) = (tmp.at<float>(2 * i, j) - tmp.at<float>(2 * i + 1, j)) / 2; } } imgtmp = wavelet; depthcount++; } normalize(wavelet, wavelet, 0, 1, cv::NORM_MINMAX); imshow("wavelet", wavelet); waitKey(0); return 0; }

 最后的评估

Canny方法不易受噪声干扰,能够检测到真正的弱边缘。优点在于,使用两种不同的阈值分别检验强边缘与弱边缘,并且当弱边缘和强边缘相连时,才能将弱边缘包含在输出图像中,这个就是我上上篇中推导Canny边缘检测算法,这就是利用滞后的边界跟踪。

Sobel算子检测方法对于灰度渐变和噪声较多的图像处理效果较好,Sobel算子对边缘定位不是很准确,图像的边缘不止一个像素,如果对于精度要求不高,可以选择这个。

对于FFT与FHT,由于本人学识有限,在此不做评价。

 

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/124632.html

(0)
上一篇 2025-10-05 00:08
下一篇 2025-10-05 00:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信