线性代数(五) 线性空间

线性代数(五) 线性空间线性代数 三 线性方程组 amp 向量空间 我通过解线性方程组的方式去理解线性空间

大家好,欢迎来到IT知识分享网。

前言

《线性代数(三) 线性方程组&向量空间》我通过解线性方程组的方式去理解线性空间。此章从另一个角度去理解

空间是什么

  • 反过来,也可说:2维空间,是由无穷多个2维向量构成
  • 同样的,在3维空间中,每个3维坐标点就是一个3维向量
  • 那么同理:3维空间中有无穷多个3维向量,或3维空间由无穷多个3维向量构成

空间中所有向量,都可被表示成 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},…,\vec{e_{n}} e1
,e2
,,en
的线性组合,若有一向量记为: a ⃗ \vec{a} a

a ⃗ = k 1 ⋅ e 1 ⃗ + k 2 ⋅ e 2 ⃗ + . . . + k n ⋅ e n ⃗ , k 1 , k 2 , . . . , k n 有解即可 \vec{a}=k_{1}·\vec{e_{1}}+k_{2}·\vec{e_{2}}+…+k_{n}·\vec{e_{n}} , k_{1},k_{2},…,k_{n}有解即可 a
=
k1e1
+
k2e2
+
+knen
k1,k2,,kn有解即可

则称:这些向量 e 1 ⃗ , e 2 ⃗ , . . . , e n ⃗ \vec{e_{1}},\vec{e_{2}},…,\vec{e_{n}} e1
,e2
,,en
为这个空间基

线性空间定义及性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

向量相加

在这里插入图片描述
[ x 1 y 1 ] + [ x 2 y 2 ] = [ x 1 + x 2 y 1 + y 2 ] = [ 2 + 3 4 + 1 ] \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1+ y_2 \end{bmatrix} = \begin{bmatrix} 2 + 3 \\ 4+ 1 \end{bmatrix} [x1y1]+[x2y2]=[x1+x2y1+y2]=[2+34+1]

数与向量乘法

在这里插入图片描述
[ x y ] ∗ 2 = [ 2 x 2 y ] \begin{bmatrix} x \\ y \end{bmatrix} * 2 = \begin{bmatrix} 2x \\ 2y \end{bmatrix} [xy]2=[2x2y]

维数,坐标和基

在这里插入图片描述
这里出现了一个线性无关的概念,这里线性无关的概念和向量空间中的线性无关差不多,但向量的范围变广了。

在这里插入图片描述

  1. n维线性空间V的基不是唯一的。V中的任意n个线性无关向量都是V的一组基
  2. 向量 a ⃗ \vec{a} a
    的坐标 ( a 1 , a 2 , . . . a n ) (a_1,a_2,…a_n) (a1,a2,an) ( ε 1 , ε 2 , . . . ε n ) (\varepsilon_1,\varepsilon_2,…\varepsilon_n) (ε1,ε2,εn)基下,是唯一且确定的
要怎么确定线性空间的维数与基

在这里插入图片描述

欧几里得空间

欧几里得空间是空间中的一种类型,是一种特殊的集合。欧几里得集合中的元素:有序实数元组

例:(2,3)(2,4)(3,4)(3,5)为有序实数2元组

  • 有序是指:如(2,3)和(3,2)是两个不同的元素
  • 也就是:每个元素内的实数是讲顺序的
  • 实数是指:每个元素内的数字都∈R
  • 元组是指:每个元素有有序几个数字构成
  • 如:2个数字构成=2元组,n个数字构成=n元组

欧几里得空间符合空间的8大定理

子空间

子空间的交集

在这里插入图片描述

子空间的和

子空间的 V 1 , V 2 V_1,V_2 V1,V2的并集,并不是简单的元素相加,造成“子空间的并集不属于子空间”。
在这里插入图片描述
所以定义子空间的和
在这里插入图片描述


子空间的直和

在这里插入图片描述
子空间直和是特殊的和。基要求各子空间互相独立。

可以把整个线性空间看成一个大蛋糕。

  • 直和分解就是把蛋糕切成小块的,每一小块蛋糕都是一个子空间,所有小蛋糕之间没有交集,且它们能拼成整个蛋糕。
  • 子空间的和就是分蛋糕的时候没切好,小蛋糕拼不成整个蛋糕(子空间之间的交集非空).

商空间

在这里插入图片描述
这里的等价类 a ˉ = a + W \bar{a}=a+W aˉ=a+W,称 a ˉ \bar{a} aˉ W W W的一个陪集, a a a是陪集代表。
在这里插入图片描述
其具有性质如下


  1. 加法运算: α + W + β + W = ( α + β ) + W \alpha + W + \beta + W = (\alpha +\beta ) +W α+W+β+W=(α+β)+W
  2. 纯量乘法运算: k ( α + W ) = k α + W k(\alpha + W) = k\alpha +W k(α+W)=kα+W
  3. d i m ( V / W ) = d i m V − d i m W dim(V/W) = dim V -dimW dim(V/W)=dimVdimW
  4. 在这里插入图片描述

内积空间

向量的夹角

在这里插入图片描述
cos ⁡ θ = cos ⁡ ( α − β ) = cos ⁡ ( α ) cos ⁡ ( β ) + sin ⁡ ( α ) sin ⁡ ( β ) = x 1 x 1 2 + y 1 2 ∗ x 2 x 2 2 + y 2 2 + y 1 x 1 2 + y 1 2 ∗ y 2 x 2 2 + y 2 2 \cos\theta = \cos(\alpha-\beta) =\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)=\cfrac{x_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{x_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} + \cfrac{y_1}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1} }} * \cfrac{y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2} }} cosθ=cos(αβ)=cos(α)cos(β)+sin(α)sin(β)=x12+y12
x1
x22+y22
x2
+
x12+y12
y1
x22+y22
y2

cos ⁡ θ = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 = a ⃗ ∗ b ⃗ ∣ a ⃗ ∣ ∣ b ⃗ ∣ \cos\theta = \cfrac{x_1x_2+y_1y_2}{\sqrt{\gdef\bar#1{#1^2} \bar{x_1} + \bar{y_1}}\sqrt{\gdef\bar#1{#1^2} \bar{x_2} + \bar{y_2}}} = \cfrac{\vec{a} *\vec{b}}{|\vec{a} ||\vec{b}|} cosθ=x12+y12
x22+y22
x1x2+y1y2
=
a
∣∣b
a
b


两个向量的夹角 θ \theta θ=90°,即两个向量正交.

两个向量相互正交,把这2个向量合为一组向量,就叫正交向量组

在这里插入图片描述

正交基

在这里插入图片描述
如果 ∣ e n ∣ = 1 |e_n|=1 en=1,则称为标准正交基

施密特(Schmidt)求解正交基

  1. β 1 = α 1 \beta_1=\alpha_1 β1=α1
  2. β 1 \beta_1 β1的上的单位基为 β 1 [ β 1 , β 1 ] \cfrac{\beta_1}{\sqrt{[\beta_1,\beta_1]}} [β1,β1]
    β1
  3. 计算 α 1 \alpha_1 α1 β 1 \beta_1 β1上的投影
  4. 计算投影长度, [ α 2 , β 1 ] [ α 2 , α 2 ] [ β 1 , β 1 ] ∗ [ α 2 , α 2 ] \cfrac{[\alpha_2,\beta_1]}{\sqrt{[\alpha_2,\alpha_2]}\sqrt{[\beta_1,\beta_1]}} *\sqrt{[\alpha_2,\alpha_2]} [α2,α2]
    [β1,β1]
    [α2,β1]
    [α2,α2]
  5. 投影为长度* β 1 \beta_1 β1的上的单位基 [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 [β1,β1][α2,β1]β1
  6. 得正交基为 α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 – \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2[β1,β1][α2,β1]β1
  7. 正交基组为{
    α 2 − [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 , [ α 2 , β 1 ] [ β 1 , β 1 ] ∗ β 1 \alpha_2 – \cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1,\cfrac{[\alpha_2,\beta_1]}{[\beta_1,\beta_1]} *\beta_1 α2[β1,β1][α2,β1]β1,[β1,β1][α2,β1]β1}

正交补

定义: 设 U U U V V V的子空间,则 U ⊥ = { v ∈ V : ∀ u ∈ U < v , u > = 0 } U^\perp =\{v\in V : \forall u\in U \left< v,u\right> =0 \} U={
v
V:uUv,u=0}
称之为 U U U的正交补. ∀ u \forall u u表示集合中所有u的意思

  1. U ⊥ U^\perp U V V V的子空间;
  2. V ⊥ = { 0 } V^\perp=\{0\} V={
    0}
    { 0 } ⊥ = V \{0\}^\perp=V {
    0}=
    V
  3. U ⊥ ∩ U = { 0 } U^\perp \cap U = \{0\} UU={
    0}
    ;
  4. 如果 U , W U,W U,W都是 V V V的子集,且 U ⊆ W U\sube W UW ,则 W ⊥ ⊆ U ⊥ W^\perp \sube U^\perp WU

定理: 有限维子空间的正交分解: V = U ⊕ U ⊥ V= U \oplus U^\perp V=UU

  1. ( U ⊥ ) ⊥ = U (U^\perp)^\perp=U (U)=U
  2. dim ⁡ V = dim ⁡ U + dim ⁡ U ⊥ \dim V = \dim U + \dim U^\perp dimV=dimU+dimU

如何求解正交补的基?

  1. 假设 d i m V = 3 , d i m U = 2 且基组为 [ { 1 , 0 , 0 } , { 0 , 1 , 0 } ] dim V = 3 , dim U = 2 且基组为[\{1,0,0\},\{0,1,0\}] dimV=3,dimU=2且基组为[{
    1,0,0},{
    0,1,0}]
  2. 得矩阵 A = [ 1 0 0 0 1 0 0 0 0 ] A=\begin{bmatrix} 1 &0&0 \\ 0&1&0 \\ 0&0&0 \end{bmatrix} A=
    100010000
  3. 假设 U ⊥ U^\perp U的基组 x ⃗ = [ x y z ] \vec{x}=\begin{bmatrix} x\\ y\\ z \end{bmatrix} x
    =

    xyz
  4. A x = 0 Ax=0 Ax=0齐次方程组,你通解为{0,0,1}

正交补的基就是方程组的解,解数=dim V – R(A)

主要参考

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/125474.html

(0)
上一篇 2025-09-26 20:45
下一篇 2025-09-26 21:00

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信