二端口网络的参数

二端口网络的参数二端口网络二端口的方程和参数二端口的等效电路二端口的转移函数二端口的连接 二端口网络的四种参数计算方法

大家好,欢迎来到IT知识分享网。

Z Z Z 参数

Z = [ Z 11 Z 12 Z 21 Z 22 ] Z = \begin{bmatrix}Z_{11} &Z_{12} \\Z_{21} &Z_{22} \end{bmatrix} Z=[Z11Z21Z12Z22]

(1) 方法一🍔🍔🍔

U ˙ 1 = Z 11 I ˙ 1 + Z 12 I ˙ 2 U ˙ 2 = Z 21 I ˙ 1 + Z 22 I ˙ 2 } \left.\begin{matrix}\dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2 \\\dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2 \end{matrix}\right\} U˙1=Z11I˙1+Z12I˙2U˙2=Z21I˙1+Z22I˙2}

(2) 方法二

Z 11 = U 1 ˙ I ˙ 1 ∣ I ˙ 2 = 0 Z_{11} = \frac{\dot{U_1}}{\dot{I}_1}|_{\dot{I}_2 = 0} Z11=I˙1U1˙I˙2=0
Z 21 = U 2 ˙ I ˙ 1 ∣ I ˙ 2 = 0 Z_{21} = \frac{\dot{U_2}}{\dot{I}_1}|_{\dot{I}_2 = 0} Z21=I˙1U2˙I˙2=0
Z 12 = U 1 ˙ I ˙ 2 ∣ I ˙ 1 = 0 Z_{12} = \frac{\dot{U_1}}{\dot{I}_2}|_{\dot{I}_1 = 0} Z12=I˙2U1˙I˙1=0
Z 22 = U 2 ˙ I ˙ 2 ∣ I ˙ 1 = 0 Z_{22} = \frac{\dot{U_2}}{\dot{I}_2}|_{\dot{I}_1 = 0} Z22=I˙2U2˙I˙1=0


Y Y Y 参数

Y = [ Y 11 Y 12 Y 21 Y 22 ] Y = \begin{bmatrix}Y_{11} &Y_{12} \\Y_{21} &Y_{22} \end{bmatrix} Y=[Y11Y21Y12Y22]

(1) 方法一🍔🍔🍔

I ˙ 1 = Y 11 U ˙ 1 + Y 12 U ˙ 2 I ˙ 2 = Y 21 U ˙ 1 + Y 22 U ˙ 2 } \left.\begin{matrix}\dot{I}_1 = Y_{11}\dot{U}_1 + Y_{12}\dot{U}_2 \\\dot{I}_2 = Y_{21}\dot{U}_1 + Y_{22}\dot{U}_2 \end{matrix}\right\} I˙1=Y11U˙1+Y12U˙2I˙2=Y21U˙1+Y22U˙2}

(2) 方法二

Y 11 = I 1 ˙ U ˙ 1 ∣ U ˙ 2 = 0 Y_{11} = \frac{\dot{I_1}}{\dot{U}_1}|_{\dot{U}_2 = 0} Y11=U˙1I1˙U˙2=0

Y 21 = I 2 ˙ U ˙ 1 ∣ U ˙ 2 = 0 Y_{21} = \frac{\dot{I_2}}{\dot{U}_1}|_{\dot{U}_2 = 0} Y21=U˙1I2˙U˙2=0

Y 12 = I 1 ˙ U ˙ 2 ∣ U ˙ 1 = 0 Y_{12} = \frac{\dot{I_1}}{\dot{U}_2}|_{\dot{U}_1 = 0} Y12=U˙2I1˙U˙1=0

Y 22 = I 2 ˙ U ˙ 2 ∣ U ˙ 1 = 0 Y_{22} = \frac{\dot{I_2}}{\dot{U}_2}|_{\dot{U}_1 = 0} Y22=U˙2I2˙U˙1=0


Y参数矩阵与Z参数矩阵的关系

Y = Z − 1   或   Z = Y − 1 Y = Z^{-1} ~或~Z = Y^{-1} Y=Z1  Z=Y1


T T T 参数

T = [ A B C D ] T = \begin{bmatrix}A &B \\C &D \end{bmatrix} T=[ACBD]

(1) 方法一🍔🍔🍔

U ˙ 1 = A U ˙ 2 − B I ˙ 2 I ˙ 1 = C U ˙ 2 − D I ˙ 2 } \left.\begin{matrix}\dot{U}_1 = A\dot{U}_2 – B\dot{I}_2 \\\dot{I}_1 = C\dot{U}_2 – D\dot{I}_2 \end{matrix}\right\} U˙1=AU˙2BI˙2I˙1=CU˙2DI˙2}

(2) 方法二

A = U ˙ 1 U ˙ 2 ∣ I ˙ 2 = 0 A = \frac{\dot{U}_1}{\dot{U}_2}|_{
{\dot{I}_2} = 0}
A=U˙2U˙1I˙2=0

B = U ˙ 1 − I ˙ 2 ∣ U ˙ 2 = 0 B = \frac{\dot{U}_1}{-\dot{I}_2}|_{
{\dot{U}_2} = 0}
B=I˙2U˙1U˙2=0

C = I ˙ 1 U ˙ 2 ∣ I ˙ 2 = 0 C = \frac{\dot{I}_1}{\dot{U}_2}|_{
{\dot{I}_2} = 0}
C=U˙2I˙1I˙2=0

D = I ˙ 1 − I ˙ 2 ∣ U ˙ 2 = 0 D= \frac{\dot{I}_1}{-\dot{I}_2}|_{
{\dot{U}_2} = 0}
D=I˙2I˙1U˙2=0

H H H 参数

H = [ H 11 H 12 H 21 H 22 ] H = \begin{bmatrix}H_{11} &H_{12} \\H_{21} &H_{22} \end{bmatrix} H=[H11H21H12H22]

(1) 方法一🍔🍔🍔

U ˙ 1 = H 11 I ˙ 1 + H 12 U ˙ 2 I ˙ 2 = H 21 I ˙ 1 + H 22 U ˙ 2 } \left.\begin{matrix}\dot{U}_1 = H_{11}\dot{I}_1 + H_{12}\dot{U}_2 \\\dot{I}_2 = H_{21}\dot{I}_1 + H_{22}\dot{U}_2 \end{matrix}\right\} U˙1=H11I˙1+H12U˙2I˙2=H21I˙1+H22U˙2}

(2) 方法二

H 11 = U ˙ 1 U ˙ 2 ∣ U ˙ 2 = 0 H_{11} = \frac{\dot{U}_1}{\dot{U}_2}|_{
{\dot{U}_2} = 0}
H11=U˙2U˙1U˙2=0

H 12 = U ˙ 1 U ˙ 2 ∣ I ˙ 1 = 0 H_{12} = \frac{\dot{U}_1}{\dot{U}_2}|_{
{\dot{I}_1} = 0}
H12=U˙2U˙1I˙1=0

H 21 = I ˙ 2 I ˙ 1 ∣ U ˙ 2 = 0 H_{21} = \frac{\dot{I}_2}{\dot{I}_1}|_{
{\dot{U}_2} = 0}
H21=I˙1I˙2U˙2=0

H 22 = I ˙ 2 U ˙ 2 ∣ I ˙ 1 = 0 H_{22} = \frac{\dot{I}_2}{\dot{U}_2}|_{
{\dot{I}_1} = 0}
H22=U˙2I˙2I˙1=0

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/133654.html

(0)
上一篇 2025-07-20 22:33
下一篇 2025-07-20 22:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信