震荡间断点与导函数不连续

震荡间断点与导函数不连续如果导函数有间断点 原函数是否存在 我们直接给出结论 1 如果导函数存在可去间断点 跳跃间断点 或无穷间断点 则不存在原函数 2 如果导函数存在震荡间断点 则可能存在原函数

大家好,欢迎来到IT知识分享网。

如果导函数有间断点,原函数是否存在?

我们直接给出结论:

1, 如果导函数存在可去间断点,跳跃间断点,或无穷间断点,则不存在原函数;

2, 如果导函数存在震荡间断点,则可能存在原函数。

 

因此,我们知道,函数的间断点一共有4种

第一类间断点:可去间断点,跳跃间断点;

第二类间断点:无穷间断点,震荡间断点。

 

什么是震荡间断点?

震荡间断点

震荡间断点

在x=0的领域内,反复跳动

 

如果导函数存在震荡间断点,则可能存在原函数。

首先要明确一个知识点:分段函数是一个函数,不是多个函数。

下面这个函数(最好记住这个非常典型的函数)在x=0处可导,其导函数在x=0点是震荡间断点:

这个函数在x=0处可导,其导函数以及导函数的函数图像如下图:

导函数存在震荡间断点的实例

导函数存在震荡间断点的实例

 

因此,我们可以得到这个结论:

函数可导,但导函数不一定连续;导函数在闭区间连续,必存在原函数。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/134293.html

(0)
上一篇 2025-07-13 17:00
下一篇 2025-07-13 17:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信