trl – 微调、对齐大模型的全栈工具

trl – 微调、对齐大模型的全栈工具一 关于 TRL 亮点二 安装 1 Python 包 2 从源码安装 3 存储库三 命令行界面 CLI 四 如何使用 1 SFTTrainer 2 RewardTraine 3 PPOTrainer

大家好,欢迎来到IT知识分享网。

trl


一、关于 TRL

TRL : Transformer Reinforcement Learning

Full stack library to fine-tune and align large language models.

Train transformer language models with reinforcement learning.

  • github : https://github.com/huggingface/trl
  • 文档:https://huggingface.co/docs/trl/index

trl库是一个全栈工具,用于使用监督微调步骤(SFT)、奖励建模(RM)和近似策略优化(PPO)以及直接偏好优化(DPO)等方法微调和对齐转换器语言和扩散模型。

该库建立在transformers库之上,因此允许使用那里可用的任何模型架构。


亮点

  • Efficient and scalable
    • accelerate是trl的支柱,它允许使用DDP和DeepSpeed等方法将模型训练从单个GPU扩展到大规模多节点集群。
    • PEFT是完全集成的,即使是最大的模型也可以通过量化和LoRA或QLoRA等方法在适度的硬件上训练。
    • unsloth也是集成的,允许使用专用内核显着加快训练速度。
  • CLI:使用CLI,您可以使用单个命令和灵活的配置系统微调LLM并与之聊天,而无需编写任何代码。
  • Trainers:培训师类是一个抽象,可以轻松应用许多微调方法,如SFTTrainer、DPOTrainer、RewardTrainer、PPOTrainer、CPOTrainer和ORPOTrainer。
  • AutoModels:AutoModelForCausalLMWithValueHead & AutoModelForSeq2SeqLMWithValueHead 类为模型添加了一个额外的值头,允许使用RL算法(如PPO)训练它们。
  • Examples:使用BERT情感分类器训练GPT2以生成积极的电影评论,仅使用适配器的完整RLHF,训练GPT-j毒性更小,StackLlama示例等。以下是示例。

二、安装


1、Python

使用pip安装库:

pip install trl 

2、从源码安装

如果您想在正式发布之前使用最新功能,您可以从源代码安装:

pip install git+https://github.com/huggingface/trl.git 

3、存储库

如果您想使用这些示例,您可以使用以下命令克隆存储库:

git clone https://github.com/huggingface/trl.git 

三、命令行界面(CLI)

您可以使用TRL命令行界面(CLI)快速开始使用监督微调(SFT)、直接偏好优化(DPO)并使用聊天CLI测试对齐的模型:

SFT:

trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb 

DPO:

trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-helpful-base-trl-style --output_dir opt-sft-hh-rlhf 

聊天:

trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat 

在 relevant documentation section 阅读有关CLI的更多信息,或使用--help获取更多详细信息。


四、如何使用

为了获得更多的灵活性和对训练的控制,您可以使用专用的训练类 来微调Python中的模型。


1、SFTTrainer

这是如何使用库中的SFTTrainer的基本示例。

SFTTrainer 是围绕transformersTrainer的轻型包装器,可轻松微调自定义数据集上的语言模型或适配器。

# imports from datasets import load_dataset from trl import SFTTrainer # get dataset dataset = load_dataset("imdb", split="train") # get trainer trainer = SFTTrainer( "facebook/opt-350m", train_dataset=dataset, dataset_text_field="text", max_seq_length=512, ) # train trainer.train() 

2、RewardTrainer

这是如何使用库中的RewardTrainer的基本示例。

RewardTrainer transformers Trainer 的包装器,可轻松微调自定义偏好数据集上的奖励模型或适配器。

# imports from transformers import AutoModelForSequenceClassification, AutoTokenizer from trl import RewardTrainer # load model and dataset - dataset needs to be in a specific format model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1) tokenizer = AutoTokenizer.from_pretrained("gpt2") ... # load trainer trainer = RewardTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, ) # train trainer.train() 

3、PPOTrainer

这是如何使用库中的PPOTrainer的基本示例。

基于查询,语言模型创建一个响应,然后对其进行评估。评估可以是循环中的人或另一个模型的输出。

# imports import torch from transformers import AutoTokenizer from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model from trl.core import respond_to_batch # get models model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2') ref_model = create_reference_model(model) tokenizer = AutoTokenizer.from_pretrained('gpt2') tokenizer.pad_token = tokenizer.eos_token # initialize trainer ppo_config = PPOConfig(batch_size=1, mini_batch_size=1) # encode a query query_txt = "This morning I went to the " query_tensor = tokenizer.encode(query_txt, return_tensors="pt") # get model response response_tensor = respond_to_batch(model, query_tensor) # create a ppo trainer ppo_trainer = PPOTrainer(ppo_config, model, ref_model, tokenizer) # define a reward for response # (this could be any reward such as human feedback or output from another model) reward = [torch.tensor(1.0)] # train model for one step with ppo train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward) 

4、DPOTrainer

DPOTrainer是使用直接偏好优化算法的培训师,这是如何使用库中的DPOTrainer的基本示例DPOTrainertransformersTrainer的包装器,可轻松微调自定义偏好数据集上的奖励模型或适配器。

# imports from transformers import AutoModelForCausalLM, AutoTokenizer from trl import DPOTrainer # load model and dataset - dataset needs to be in a specific format model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") ... # load trainer trainer = DPOTrainer( model=model, tokenizer=tokenizer, train_dataset=dataset, ) # train trainer.train() 

五、其它

开发 & 贡献

如果您想为trl做出贡献或根据您的需求对其进行定制,请务必阅读贡献指南并确保您进行了开发安装:

git clone https://github.com/huggingface/trl.git cd trl/ make dev 

参考文献


最近策略优化 PPO

PPO实现在很大程度上遵循D. Ziegler等人的“来自人类偏好的微调语言模型”论文中介绍的结构。[论文,代码]。


直接偏好优化 DPO

DPO基于E. Mitchell等人的《直接偏好优化:您的语言模型是秘密的奖励模型》的原始实现。[论文,代码]


2024-07-17(三)

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/135043.html

(0)
上一篇 2025-07-07 17:20
下一篇 2025-07-07 17:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信