0804空间直线及其方程-向量代数与空间解析几何

0804空间直线及其方程-向量代数与空间解析几何0804 空间直线及其方程 向量代数与空间解析几何 空间向量直线方程

大家好,欢迎来到IT知识分享网。

1 空间直线方程

1.1 空间直线的一般方程

注:空间直线方程不唯一,因为过一条直线有无数平面。

1.2 空间直线的对称式方程

如果一个非零向量平行于一条已知直线,那么这个向量叫做这条直线的方向向量。

由直线L上的一点 M ( x 0 , y 0 , z 0 ) 和方向向量 s ⃗ = ( m , n , p ) M(x_0,y_0,z_0)和方向向量\vec s=(m,n,p) M(x0,y0,z0)和方向向量s
=
(m,n,p)
唯一确定该直线。设置 M ( x , y , z ) M(x,y,z) M(x,y,z)为直线上的任一一点,由 M 0 M ⃗ ∥ s ⃗ \vec{M_0M}\parallel \vec s M0M
s
,有

x − x 0 m = y − y 0 n = z − z 0 p ( 4 − 2 ) \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}\quad (4-2) mxx0=nyy0=pzz0(42)

方程组(4-2)叫做直线L的对称式方程或者点向式方程。

直线的任一方向向量 s ⃗ \vec s s
的坐标m,n,p叫做直线的一组方向数,向量 s ⃗ \vec s s
的方向余弦叫做该直线的方向余弦。

注:

  • 当m,n,p中有一个为零时,例如 m = 0 , n ≠ 0 , p ≠ 0 m=0,n\not=0,p\not=0 m=0,n=0,p=0,方程组为
    { x − x 0 = 0 y − y 0 n = z − z 0 p \begin{cases} x-x_0=0\\ \frac{y-y_0}{n}=\frac{z-z_0}{p} \end{cases} {
    xx0=0nyy0=pzz0

  • 当m,n,p中有两个为零时,例如 m = n = 0 , p ≠ 0 m=n=0,p\not=0 m=n=0,p=0,方程组为平行于z轴的直线
    { x − x 0 = 0 y − y 0 = 0 \begin{cases} x-x_0=0\\ y-y_0=0\\ \end{cases} {
    xx0=0yy0=0

1.3 空间直线的参数方程

x − x 0 m = y − y 0 n = z − z 0 p = t \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t mxx0=nyy0=pzz0=t,有
{ x = x 0 + m t y = y 0 + n t z = z 0 + p t ( 4 − 3 ) \begin{cases} x=x_0+mt\\ y=y_0+nt\\ z=z_0+pt \end{cases}\uad (4-3)

x=x0+mty=y0+ntz=z0+pt
(4
3)

方程组(4-3)叫做直线的参数方程。

注:

  • t取定每一个值,对应x,y,z为直线L上的一点;
  • 参数式方程一般用来求直线与平面的交点。

1.4 空间直线的两点式方程

设直线L过两点 M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) M_1(x_1,y_1,z_1),M_2(x_2,y_2,z_2) M1(x1,y1,z1),M2(x2,y2,z2),则方向向量$\vec s=(x2_x_1,y_2-y_1,z_2-z_1),根据空间直线的一般方程有

x − x 1 x 2 − x 1 = y − y 1 y 2 − y 1 = z − z 1 z 2 − z 1 ( 4 − 4 ) \frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}\uad (4-4) x2x1xx1=y2y1yy1=z2z1zz1(44)

方程(4-4)称为空间直线的两点式方程。

3 两直线的夹角

两直线方向向量的夹角(通常指锐角或者直角)叫做两直线的夹角。

设两直线 L 1 和 L 2 L_1和L_2 L1L2的方向向量依次为 s ⃗ 1 = ( m 1 , n 1 , p 1 ) 和 s ⃗ 2 = ( m 2 , n 2 , p 2 ) \vec s_1=(m_1,n_1,p_1)和\vec s_2=(m_2,n_2,p_2) s
1
=
(m1,n1,p1)s
2
=
(m2,n2,p2)
,则两向量夹角余弦公式为:

cos ⁡ ϕ = ∣ m 1 m 2 + n 1 n 2 + p 1 P 2 ∣ m 1 2 + n 1 2 + p 1 2 ⋅ m 2 2 + n 2 2 + p 2 2 \cos\phi=\frac{|m_1m_2+n_1n_2+p_1P_2|}{\sqrt{m_1^2+n_1^2+p_1^2}\cdot\sqrt{m_2^2+n_2^2+p_2^2}} cosϕ=m12+n12+p12
m22+n22+p22
m1m2+n1n2+p1P2

结论:

  1. L 1 ⊥ l 2 ⇔ s ⃗ 1 ⊥ s ⃗ 2 ⇔ m 1 m 2 + n 1 n 2 + p 1 p 2 = 0 L_1\perp l_2 \Leftrightarrow \vec s_1\perp \vec s_2\Leftrightarrow m_1m_2+n_1n_2+p_1p_2=0 L1l2s
    1
    s
    2
    m1m2+n1n2+p1p2=0
  2. L 1 ∥ l 2 ⇔ s ⃗ 1 ∥ s ⃗ 2 ⇔ m 1 m 2 = n 1 n 2 = p 1 p 2 L_1\parallel l_2 \Leftrightarrow \vec s_1\parallel \vec s_2\Leftrightarrow \frac{m_1}{m_2}=\frac{n_1}{n_2}=\frac{p_1}{p_2} L1l2s
    1
    s
    2
    m2m1=n2n1=p2p1

4 直线与平面的夹角

4.1 定义

直线与其在平面上投影直线所形成的夹角 ϕ ( 0 ≤ ϕ ≤ π 2 ) \phi(0\le\phi\le\frac{\pi}{2}) ϕ(0ϕ2π),称为直线与平面的夹角。

4.2 夹角的正弦公式

如下图4-1所示:

在这里插入图片描述

直线L的方向向量 s ⃗ = ( m , n , p ) \vec s=(m,n,p) s
=
(m,n,p)
,平面 π 的法线向量 n ⃗ = ( A , B , C ) \pi的法线向量\vec n=(A,B,C) π的法线向量n
=
(A,B,C)
,有

sin ⁡ ϕ = ∣ A m + B n + C p A 2 + B 2 + C 2 m 2 + n 2 + p 2 \sin\phi=\frac{|Am+Bn+Cp}{\sqrt{A^2+B^2+C^2}\sqrt{m^2+n^2+p^2}} sinϕ=A2+B2+C2
m2+n2+p2
Am+Bn+Cp

结论:

  1. L ⊥ π ⇔ s ⃗ ∥ n ⃗ ⇔ A m = B n = C p L\perp \pi \Leftrightarrow \vec s\parallel \vec n\Leftrightarrow \frac{A}{m}=\frac{B}{n}=\frac{C}{p} Lπs
    n
    mA=nB=pC
  2. L ∥ π ⇔ s ⃗ ⊥ n ⃗ ⇔ A m + B n + C p = 0 L\parallel \pi \Leftrightarrow \vec s\perp \vec n\Leftrightarrow Am+Bn+Cp=0 Lπs
    n
    Am+Bn+Cp=0

5 例题

例2 求过点 ( 1 , − 2 , 4 ) 且与平面 2 x − 3 y + z − 4 = 0 (1,-2,4)且与平面2x-3y+z-4=0 (1,2,4)且与平面2x3y+z4=0垂直的直线的方程。
解:设直线 L 的方向向量 s ⃗ = ( m , n , p ) ∵ 直线与平面垂直 ∴ s ⃗ ∥ 平面的法线向量 n ⃗ n ⃗ = ( 2 , − 3 , 1 ) , 有 取 s ⃗ = ( 2 , − 3 , 1 ) 直线的对称式方程: x − 1 2 = y + 2 − 3 = z − 4 1 解:设直线L的方向向量\vec s=(m,n,p)\\ \because 直线与平面垂直 \therefore \vec s\parallel 平面的法线向量\vec n\\ \vec n=(2,-3,1),有\\ 取\vec s=(2,-3,1)\\ 直线的对称式方程:\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-4}{1} 解:设直线L的方向向量s
=
(m,n,p)直线与平面垂直s
平面的法线向量n
n
=
(2,3,1),s
=
(2,3,1)直线的对称式方程:2x1=3y+2=1z4

例3 求过点 ( 2 , 1 , 3 ) 且与直线 x + 1 3 = y − 1 2 = z − 1 (2,1,3)且与直线\frac{x+1}{3}=\frac{y-1}{2}=\frac{z}{-1} (2,1,3)且与直线3x+1=2y1=1z垂直的的直线方程。
解:过点 M 0 ( 2 , 1 , 3 ) 且与直线 L : x + 1 3 = y − 1 2 = z − 1 垂直的平面方程方程为 3 ( x − 2 ) + 2 ( y − 1 ) − ( z − 3 ) = 0 即 3 x + 2 y − z − 5 = 0 ( 4 − 1 ) 令 x + 1 3 = y − 1 2 = z − 1 = t 直线 L 的参数式方程: { x = 3 t − 1 y = 2 t + 1 z = − t 带入 ( 4 − 1 ) 得, t = 3 7 ∴ 平面与直线 L 的交点坐标 M 1 ( 2 7 , 13 7 , − 3 7 ) ∴ M 0 M 1 ⃗ = ( − 12 7 , 6 7 , − 24 7 ) 取 s ⃗ = ( 2 , − 1 , 4 ) ∴ 直线对称式方程: x − 2 2 = y − 1 − 1 = z − 3 4 解:过点M_0(2,1,3)且与直线L:\frac{x+1}{3}=\frac{y-1}{2}=\frac{z}{-1}垂直的平面方程方程为\\ 3(x-2)+2(y-1)-(z-3)=0即 3x+2y-z-5=0\quad(4-1)\\ 令\frac{x+1}{3}=\frac{y-1}{2}=\frac{z}{-1}=t \\ 直线L的参数式方程: \begin{cases} x=3t-1\\ y=2t+1\\ z=-t \end{cases}\\ 带入(4-1)得,t=\frac{3}{7}\\ \therefore 平面与直线L的交点坐标M_1(\frac{2}{7},\frac{13}{7},-\frac{3}{7})\\ \therefore \vec{M_0M_1}=(-\frac{12}{7},\frac{6}{7},-\frac{24}{7})\\ 取\vec s=(2,-1,4)\\ \therefore 直线对称式方程:\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-3}{4} 解:过点M0(2,1,3)且与直线L:3x+1=2y1=1z垂直的平面方程方程为3(x2)+2(y1)(z3)=03x+2yz5=0(41)3x+1=2y1=1z=t直线L的参数式方程:

x=3t1y=2t+1z=t
带入(41)得,t=73平面与直线L的交点坐标M1(72,713,73)M0M1
=
(712,76,724)s
=
(2,1,4)直线对称式方程:2x2=1y1=4z3



6 平面束方程

A 1 x + B 1 y + C 1 + λ ( A 2 x + B 2 y + C 2 z ) = 0 A_1x+B_1y+C_1+\lambda(A_2x+B_2y+C_2z)=0 A1x+B1y+C1+λ(A2x+B2y+C2z)=0

能够表示通过直线L的所有平面(除 π 2 \pi_2 π2以外),称为通过直线L的平面束方程。

结语

❓:

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 下册[M].北京:高等教育出版社,2014.7.p30-36.

[2]同济七版《高等数学》全程教学视频[CP/OL].2020-04-16.p54.

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/135311.html

(0)
上一篇 2025-07-05 18:20
下一篇 2025-07-05 18:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信