什么是孪生素数猜想

什么是孪生素数猜想孪生素数猜想就是一个初等数论问题 孪生素数猜想

大家好,欢迎来到IT知识分享网。

什么是孪生素数猜想

素数p与素数p+2有无穷多对

孪生素数的公式(详见百度百科:孪生素数公式)

利用素数的判定法则,可以得到以下的结论:“若自然数q与q+2都不能被任何不大于\sqrt{q+2}的素数 整除,则q与q + 2都是素数”。这是因为一个自然数n是素数当且仅当它不能被任何小于等于\sqrt{n}的素数整除。 用数学的语言表示以上的结论,就是:

存在一组自然数

b_{1},b_{2},....,b_{k}

使得

q=p_{1}m_{1}+b_{1}=p_{2}m_{2}+b_{2}=...=p_{k}m_{k}+b_{k}

…….(1)

其中 p_{1},p_{2},.....,p_{k}表示从小到大排列时的前k个素数:2,3,5,….。并且满足

1≦ i ≦ k,

b_{i}\prec p_{i}

b_{i}\neq 0, b_{i}\neq p_{i}-2.

这样解得的自然数q如果满足q\prec p_{k+1}^{2}-2,

则q与q+2是一对孪生素数。

我们可以把(1)式的内容等价转换成为同余方程组表示:

q ≡b_{1} (modp_{1}), q ≡b_{2}(modp_{2}), …, q ≡b_{k}(mod p_{k})…..(2)

由于(2)的模p_{1},p_{2},.....,p_{k}都是素数,因此两两互素,根据孙子定理(中国剩余定理)知,对于给定的 b_{1},b_{2},....,b_{k},(2)式有唯一 一个小于p_{1}p_{2}...p_{k}的正整数解。

范例

例如k=1时,

q=2m_{1}+1

解得q=3, 5。由于5\prec 3^{2}-2,所以可知3与3+2、5与5+2都是孪生素数。这样就求得了区间(3, 3^{2})里的全部孪生素数对。

又比如k=2时,

列出方程

q=2m_{1}+1=3m_{2}+2

解得q=5,11,17。由于17<5^{2}-2,所以11与11+2、17与17+2都是了孪生素数。由于这已经是所有可能的b_{1},b_{2},....,b_{k}值,所以这样就求得了区间(5, 5^{2})的全部孪生素数对。

k=3时 5m_{3}+1 5m_{3}+2 5m_{3}+4
q=2m_{1}+1=3m_{2}+2 11 ;41 17 29

由于这已经是所有可能的b_{1},b_{2},....,b_{k}值,所以这样就求得了区间(7, 7^{2})的全部孪生素数对。

k=4时 7m_{4}+1 7m4+2 7m4+3 7m4+4 7m4+6
q=2m_{1}+1=3m_{2}+2=5m_{3}+1 71 191 101 11 41
q=2m_{1}+1=3m_{2}+2=5m_{3}+2 197 107 17 137 167
q=2m_{1}+1=3m_{2}+2=5m_{3}+4 29 149 59 179 209

    由于这已经是所有可能的b_{1},b_{2},....,b_{k}值,所以这样就求得了区间(11, 11^{2})的全部孪生素数对(8个小于121-2的解)。       仿此下去可以一个不漏地求得任意大的数以内的全部孪生素数对。

结论推广

孪生素数猜想就是在k值任意大时(1)和(2)式都有小于p_{k+1}^{2}-2的解。问题已经转入初等数论范围。 参考文献,孪生质数公式,【中等数学】2000年1期

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/135433.html

(0)
上一篇 2025-07-04 20:00
下一篇 2025-07-04 20:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信