大家好,欢迎来到IT知识分享网。
Normally to perform supervised learning you need two types of data sets:
- In one dataset (your “gold standard”) you have the input data together with correct/expected output, This dataset is usually duly prepared either by humans or by collecting some data in semi-automated way. But it is important that you have the expected output for every data row here, because you need for supervised learning.
- The data you are going to apply your model to. In many cases this is the data where you are interested for the output of your model and thus you don’t have any “expected” output here yet.
While performing machine learning you do the following:
- Training phase: you present your data from your “gold standard” and train your model, by pairing the input with expected output.
- Validation/Test phase: in order to estimate how well your model has been trained (that is dependent upon the size of your data, the value you would like to predict, input etc) and to estimate model properties (mean error for numeric predictors, classification errors for classifiers, recall and precision for IR-models etc.)
- Application phase: now you apply your freshly-developed model to the real-world data and get the results. Since you normally don’t have any reference value in this type of data (otherwise, why would you need your model?), you can only speculate about the quality of your model output using the results of your validation phase.
The validation phase is often split into two parts:
- In the first part you just look at your models and select the best performing approach using the validation data (=validation)
- Then you estimate the accuracy of the selected approach (=test).
Hence the separation to 50/25/25.
In case if you don’t need to choose an appropriate model from several rivaling approaches, you can just re-partition your set that you basically have only training set and test set, without performing the validation of your trained model. I personally partition them 70/30 then.
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/136986.html