大家好,欢迎来到IT知识分享网。
第三节 分块矩阵
文章目录
一、 相关概念
- 将矩阵 A A A通过若干条纵线和横线分成许多个小矩阵,每个小矩阵称为 A A A的子块,以子块为元素的矩阵称为分块矩阵,如:
A = [ 2 1 1 0 − 1 1 2 2 − 3 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 ] = [ A 1 A 2 O E 3 ] A = \begin{bmatrix} 2 & 1 & 1 & 0 & -1 \\ 1 & 2 & 2 & -3 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} A_{1} & A_{2} \\ \mathbf{O} & E_{3} \\ \end{bmatrix} A=
2100012000121000−3010−10001
=[A1OA2E3]
其中:
A 1 = [ 2 1 1 2 ] , A 2 = [ 1 0 − 1 2 − 3 0 ] , O = [ 0 0 0 0 0 0 ] , E 3 = [ 1 0 0 0 1 0 0 0 1 ] A_{1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ \end{bmatrix} , A_{2} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -3 & 0 \\ \end{bmatrix} , \mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{bmatrix} , E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} A1=[2112],A2=[120−3−10],O=
000000
,E3=
100010001
- 按列分块矩阵、按行分块矩阵:
设 m × n m \times n m×n矩阵
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix} A=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
- 把 A A A的每个列作为一个子块,即在列的方向分成 n n n块,就得到 A A A的按列分块矩阵,记为
A = [ α 1 , α 2 , ⋯ , α n ] A = \begin{bmatrix} \alpha_{1},\ \alpha_{2},\ \cdots,\ \alpha_{n} \end{bmatrix} A=[α1, α2, ⋯, αn]
其中, α j = [ a 1 j a 2 j ⋮ a m j ] , j = 1 , 2 , ⋯ , n . \alpha_{j} = \begin{bmatrix}a_{1j}\\ a_{2j}\\ \vdots \\a_{mj}\end{bmatrix}, j = 1,\ 2,\ \cdots,\ n. αj=
a1ja2j⋮amj
,j=1, 2, ⋯, n.
- 类似的,把 A A A的每一行作为一个子块,就得到 A A A的按行分块矩阵,记为
A = [ β 1 β 2 ⋮ β m ] A = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{m} \\ \end{bmatrix} A=
β1β2⋮βm
其中, β i = [ a i 1 , a i 2 , ⋯ , a i m ] , i = 1 , 2 , ⋯ , m . \beta_{i} = [a_{i1},\ a_{i2},\ \cdots,\ a_{im}], i = 1,\ 2,\ \cdots,\ m. βi=[ai1, ai2, ⋯, aim],i=1, 2, ⋯, m.
二、分块矩阵的运算法则
- 分块矩阵的加法
设 A = [ a i j ] m × n , B = [ b i j ] m × n A = [a_{ij}]_{m \times n},\ B = [b_{ij}]_{m \times n} A=[aij]m×n, B=[bij]m×n,采用相同的分块法(每个对应子块都是同型矩阵),有
A = [ A 11 A 12 ⋯ A 1 t A 21 A 22 ⋯ A 2 t ⋮ ⋮ ⋱ ⋮ A s 1 A s 2 ⋯ A s t ] , B = [ B 11 B 12 ⋯ B 1 t B 21 B 22 ⋯ B 2 t ⋮ ⋮ ⋱ ⋮ B s 1 B s 2 ⋯ B s t ] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{st} \\ \end{bmatrix} , B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1t} \\ B_{21} & B_{22} & \cdots & B_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ B_{s1} & B_{s2} & \cdots & B_{st} \\ \end{bmatrix} A=
A11A21⋮As1A12A22⋮As2⋯⋯⋱⋯A1tA2t⋮Ast
,B=
B11B21⋮Bs1B12B22⋮Bs2⋯⋯⋱⋯B1tB2t⋮Bst
其中 A i j A_{ij} Aij与 B i j B_{ij} Bij的行相同,列数也相同,则有:
A + B = [ A 11 + B 11 A 12 + B 12 ⋯ A 1 t + B 1 t A 21 + B 21 A 22 + B 22 ⋯ A 2 t + B 2 t ⋮ ⋮ ⋱ ⋮ A s 1 + B s A s 2 + B s 2 ⋯ A s t + B s t ] A+B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1t} + B_{1t} \\ A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2t} + B_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{s1} + B_{s} & A_{s2} + B_{s2} & \cdots & A_{st} + B_{st} \\ \end{bmatrix} A+B=
A11+B11A21+B21⋮As1+BsA12+B12A22+B22⋮As2+Bs2⋯⋯⋱⋯A1t+B1tA2t+B2t⋮Ast+Bst
- 数与分块矩阵的乘法:
设分块矩阵
A = [ A 11 A 12 ⋯ A 1 t A 21 A 22 ⋯ A 2 t ⋮ ⋮ ⋱ ⋮ A s 1 A s 2 ⋯ A s t ] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{st} \\ \end{bmatrix} A=
A11A21⋮As1A12A22⋮As2⋯⋯⋱⋯A1tA2t⋮Ast
λ \lambda λ为数,则有:
λ A = [ λ A 11 λ A 12 ⋯ λ A 1 t λ A 21 λ a 22 ⋯ λ A 2 t ⋮ ⋮ ⋱ ⋮ λ A s 1 λ A s 2 ⋯ λ A s t ] \lambda A = \begin{bmatrix} \lambda A_{11} & \lambda A_{12} & \cdots & \lambda A_{1t} \\ \lambda A_{21} & \lambda a_{22} & \cdots & \lambda A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda A_{s1} & \lambda A_{s2} & \cdots & \lambda A_{st} \\ \end{bmatrix} λA=
λA11λA21⋮λAs1λA12λa22⋮λAs2⋯⋯⋱⋯λA1tλA2t⋮λAst
- 分块矩阵的乘法
设 A = [ a i j ] m × n , B = [ b i j ] m × n A = [a_{ij}]_{m \times n},\ B = [b_{ij}]_{m \times n} A=[aij]m×n, B=[bij]m×n,将 A , B A,\ B A, B分块成
A = [ A 11 A 12 ⋯ A 1 t A 21 A 22 ⋯ A 2 t ⋮ ⋮ ⋱ ⋮ A s 1 A s 2 ⋯ A s t ] , B = [ B 11 B 12 ⋯ B 1 r B 21 B 22 ⋯ B 2 r ⋮ ⋮ ⋱ ⋮ B t 1 B t 2 ⋯ B t r ] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{st} \\ \end{bmatrix} , B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ B_{21} & B_{22} & \cdots & B_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ B_{t1} & B_{t2} & \cdots & B_{tr} \\ \end{bmatrix} A=
A11A21⋮As1A12A22⋮As2⋯⋯⋱⋯A1tA2t⋮Ast
,B=
B11B21⋮Bt1B12B22⋮Bt2⋯⋯⋱⋯B1rB2r⋮Btr
其中 A i 1 , A i 2 , ⋯ , A i t A_{i1},\ A_{i2},\ \cdots,\ A_{it} Ai1, Ai2, ⋯, Ait的列数分别等于 B i j , B 2 j , ⋯ , B t j B_{ij},\ B_{2j},\ \cdots,\ B_{tj} Bij, B2j, ⋯, Btj的行数,则有
A B = [ C 11 C 12 ⋯ C 1 r C 21 C 22 ⋯ C 2 r ⋮ ⋮ ⋱ ⋮ C s 1 C s 2 ⋯ C s r ] AB = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1r} \\ C_{21} & C_{22} & \cdots & C_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ C_{s1} & C_{s2} & \cdots & C_{sr} \\ \end{bmatrix} AB=
C11C21⋮Cs1C12C22⋮Cs2⋯⋯⋱⋯C1rC2r⋮Csr
其中, C i j = ∑ k = 1 t ( A i k B k j ) ( i = 1 , 2 , ⋯ , s ; j = 1 , 2 , ⋯ , r ) C_{ij} = \sum_{k = 1}^{t}(A_{ik}B_{kj})(i = 1,\ 2,\ \cdots,\ s;\ j = 1,\ 2,\ \cdots,\ r) Cij=∑k=1t(AikBkj)(i=1, 2, ⋯, s; j=1, 2, ⋯, r).
- 分块矩阵的转置
设分块矩阵
A = [ A 11 A 12 ⋯ A 1 t A 21 A 22 ⋯ A 2 t ⋮ ⋮ ⋱ ⋮ A s 1 A s 2 ⋯ A s t ] , 则 A T = [ A 11 T A 21 T ⋯ A s 1 T A 12 T A 22 T ⋯ A s 2 T ⋮ ⋮ ⋱ ⋮ A 1 t T A 2 t T ⋯ A s t T ] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{st} \\ \end{bmatrix} ,\quad 则A_{T} = \begin{bmatrix} A_{11}^{T} & A_{21}^{T} & \cdots & A_{s1}^{T} \\ A_{12}^{T} & A_{22}^{T} & \cdots & A_{s2}^{T} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1t}^{T} & A_{2t}^{T} & \cdots & A_{st}^{T} \\ \end{bmatrix} A=
A11A21⋮As1A12A22⋮As2⋯⋯⋱⋯A1tA2t⋮Ast
,则AT=
A11TA12T⋮A1tTA21TA22T⋮A2tT⋯⋯⋱⋯As1TAs2T⋮AstT
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/141913.html