异或、异或和 的性质与应用

异或、异或和 的性质与应用异或是一种基于二进制的位运算 用符号 XOR 或者 表示 其运算法则是对运算符两侧数的每一个二进制位 同值取 0 异值取 1

大家好,欢迎来到IT知识分享网。

 异或是一种基于二进制的位运算,用符号XOR或者 ^ 表示,其运算法则是对运算符两侧数的每一个二进制位,同值取0,异值取1。它与布尔运算的区别在于,当运算符两侧均为1时,布尔运算的结果为1,异或运算的结果为0。

简单理解就是不进位加法,如1+1=0,,0+0=0,1+0=1。

性质

1、交换律

2、结合律(即(a^b)^c == a^(b^c))

3、对于任何数x,都有x^x=0,x^0=x

4、自反性 A XOR B XOR B = A xor  0 = A

异或运算最常见于多项式除法,不过它最重要的性质还是自反性:A XOR B XOR B = A,即对给定的数A,用同样的运算因子(B)作两次异或运算后仍得到A本身。这是一个神奇的性质,利用这个性质,可以获得许多有趣的应用。 例如,所有的程序教科书都会向初学者指出,要交换两个变量的值,必须要引入一个中间变量。但如果使用异或,就可以节约一个变量的存储空间: 设有A,B两个变量,存储的值分别为a,b,则以下三行表达式将互换他们的值 表达式 (值) :

 A=A XOR B (a XOR b)

 B=B XOR A (b XOR a XOR b = a) 

 A=A XOR B (a XOR b XOR a = b)

 类似地,该运算还可以应用在加密,数据传输,校验等等许多领域。

运用距离:

1-1000放在含有1001个元素的数组中,只有唯一的一个元素值重复,其它均只出现
一次。每个数组元素只能访问一次,设计一个算法,将它找出来;不用辅助存储空
间,能否设计一个算法实现?

解法一、显然已经有人提出了一个比较精彩的解法,将所有数加起来,减去1+2+…+1000的和。


这个算法已经足够完美了,相信出题者的标准答案也就是这个算法,唯一的问题是,如果数列过大,则可能会导致溢出。


解法二、异或就没有这个问题,并且性能更好。


将所有的数全部异或,得到的结果与1^2^3^…^1000的结果进行异或,得到的结果就是重复数。




但是这个算法虽然很简单,但证明起来并不是一件容易的事情。这与异或运算的几个特性有关系。


首先是异或运算满足交换律、结合律。


所以,1^2^…^n^…^n^…^1000,无论这两个n出现在什么位置,都可以转换成为1^2^…^1000^(n^n)的形式。




其次,对于任何数x,都有x^x=0,x^0=x。


所以1^2^…^n^…^n^…^1000 = 1^2^…^1000^(n^n)= 1^2^…^1000^0 = 1^2^…^1000(即序列中除了n的所有数的异或)。




令,1^2^…^1000(序列中不包含n)的结果为T


则1^2^…^1000(序列中包含n)的结果就是T^n。


T^(T^n)=n。


所以,将所有的数全部异或,得到的结果与1^2^3^…^1000的结果进行异或,得到的结果就是重复数。




当然有人会说,1+2+…+1000的结果有高斯定律可以快速计算,但实际上1^2^…^1000的结果也是有规律的,算法比高斯定律还该简单的多。

 
google面试题的变形:一个数组存放若干整数,一个数出现奇数次,其余数均出现偶数次,找出这个出现奇数次的数?
 
解法有很多,但是最好的和上面一样,就是把所有数异或,最后结构就是要找的,原理同上!!
转载自http://longzxr.i.sohu.com/blog/view/190676432.htm
奇数个异或是本身,偶数个是0;0^a=a;异或有交换律

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/143523.html

(0)
上一篇 2025-05-02 21:00
下一篇 2025-05-02 21:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信