【智能算法】象群算法(EHO)原理及实现

【智能算法】象群算法(EHO)原理及实现2016 年 Wang 等人受到自然界中象群社会行为启发 提出了象群算法 ElephantHerd EHO

大家好,欢迎来到IT知识分享网。

在这里插入图片描述


1.背景

2016年,Wang等人受到自然界中象群社会行为启发,提出了象群算法(Elephant Herding Optimization, EHO)。

2.算法原理

2.1算法思想

EHO将大自然中象群的氏族结构和游牧过程中公象离群的行为,抽象为氏族更新操作和分离操作,实现高效的寻优过程。

2.2算法过程

氏族更新操作

在一个氏族中,大象在一起生活,并受到一头雌性大象的领导:
x new , ci , j = x ci , j + α × ( x best , ci − x ci , j ) × r (1) x_{\text{new},\text{ci},j}=x_{\text{ci},j}+\alpha\times\left(x_{\text{best},\text{ci}}-x_{\text{ci},j}\right)\times r\tag{1} xnew,ci,j=xci,j+α×(xbest,cixci,j)×r(1)
其中,xbest,ci为氏族ci的雌性领袖,是氏族ci中适应度最好的个体。
论文中提出氏族中心概念,对雌性领袖位置进行更新:
x n e w , c i , j = β × x c e n t e r , c i (2) x_{\mathrm{new,ci,}j}=\beta\times x_{\mathrm{center,ci}}\tag{2} xnew,ci,j=β×xcenter,ci(2)
氏族中心表述为:
x c e n t e r , c i , d = 1 n c i × ∑ j = 1 n c i x c i , j , d (3) x_{\mathrm{center},\mathrm{ci},d}=\frac{1}{n_{\mathrm{ci}}}\times\sum_{j=1}^{n_{\mathrm{ci}}}x_{\mathrm{ci},j,d}\tag{3} xcenter,ci,d=nci1×j=1ncixci,j,d(3)

分离操作:

自然界中雄性大象的生活习性是成长到一定年龄就会离开象群独自生活:
x w o r s t , c i = x m i n + ( x m a x − x m i n + 1 ) × R (4) x_{\mathrm{worst,ci}}=x_{\mathrm{min}}+\bigl(x_{\mathrm{max}}-x_{\mathrm{min}}+1\bigr)\times R\tag{4} xworst,ci=xmin+(xmaxxmin+1)×R(4)

伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Wang G G, Deb S, Gao X Z, et al. A new metaheuristic optimisation algorithm motivated by elephant herding behaviour[J]. International Journal of Bio-Inspired Computation, 2016, 8(6): 394-409.

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/146462.html

(0)
上一篇 2025-04-14 16:20
下一篇 2025-04-14 16:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信