大家好,欢迎来到IT知识分享网。
学习笔记—四元数与欧拉角之间的转换
在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系:
图1 3D Cartesian coordinate System (from wikipedia)
定义分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。
图2 Tait-Bryan angles (from wikipedia)
一、四元数的定义
通过旋转轴和绕该轴旋转的角度可以构造一个四元数:
其中是绕旋转轴旋转的角度,
为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。
二、欧拉角到四元数的转换
三、四元数到欧拉角的转换
arctan和arcsin的结果是,这并不能覆盖所有朝向(对于
角
的取值范围已经满足),因此需要用atan2来代替arctan。
四、在其他坐标系下使用
在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在Direct3D中,笛卡尔坐标系的X轴变为Z轴,Y轴变为X轴,Z轴变为Y轴(无需考虑方向)。
五、示例代码
参考文献:
[1] http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
[2] Ken Shoemake, Animating Rotation with Quaternion Curves, 1985
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/146610.html