数学基础 — 求解微分问题之乘法法则、商法则和链式求导法则

数学基础 — 求解微分问题之乘法法则、商法则和链式求导法则微分求解问题常用的三个基本法则是乘积法则 商法则和链式求导法则

大家好,欢迎来到IT知识分享网。

微分求解问题之乘法法则、商法则和链式求导法则

微分求解问题常用的三个基本法则是乘积法则、商法则和链式求导法则。下面是它们的公式和一些例子:

乘积法则

乘积法则用于求两个函数的乘积的导数。假设 u ( x ) u(x) u(x) v ( x ) v(x) v(x) 是两个可微函数,则它们乘积的导数是:
( u ( x ) v ( x ) ) ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) (u(x)v(x))’ = u'(x)v(x) + u(x)v'(x) (u(x)v(x))=u(x)v(x)+u(x)v(x)

示例

u ( x ) = x 2 u(x) = x^2 u(x)=x2 v ( x ) = e x v(x) = e^x v(x)=ex,则
( x 2 e x ) ′ = ( x 2 ) ′ e x + x 2 ( e x ) ′ = 2 x e x + x 2 e x = x e x ( 2 + x ) (x^2 e^x)’ = (x^2)’ e^x + x^2 (e^x)’ = 2x e^x + x^2 e^x = x e^x (2 + x) (x2ex)=(x2)ex+x2(ex)=2xex+x2ex=xex(2+x)

商法则

商法则用于求两个函数的商的导数。假设 u ( x ) u(x) u(x) v ( x ) v(x) v(x) 是两个可微函数,且 v ( x ) ≠ 0 v(x) \neq 0 v(x)=0,则它们商的导数是:
( u ( x ) v ( x ) ) ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v ( x ) 2 \left( \frac{u(x)}{v(x)} \right)’ = \frac{u'(x)v(x) – u(x)v'(x)}{v(x)^2} (v(x)u(x))=v(x)2u(x)v(x)u(x)v(x)

示例

u ( x ) = x 2 u(x) = x^2 u(x)=x2 v ( x ) = e x v(x) = e^x v(x)=ex,则
( x 2 e x ) ′ = ( x 2 ) ′ e x − x 2 ( e x ) ′ e 2 x = 2 x e x − x 2 e x e 2 x = e x ( 2 x − x 2 ) e 2 x = 2 x − x 2 e x \left( \frac{x^2}{e^x} \right)’ = \frac{(x^2)’ e^x – x^2 (e^x)’}{e^{2x}} = \frac{2x e^x – x^2 e^x}{e^{2x}} = \frac{e^x (2x – x^2)}{e^{2x}} = \frac{2x – x^2}{e^x} (exx2)=e2x(x2)exx2(ex)=e2x2xexx2ex=e2xex(2xx2)=ex2xx2

链式求导法则

链式求导法则用于求复合函数的导数。假设 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)),其中 f f f g g g 都是可微函数,则
y ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) y’ = f'(g(x)) \cdot g'(x) y=f(g(x))g(x)

示例

f ( x ) = sin ⁡ x f(x) = \sin x f(x)=sinx g ( x ) = x 2 g(x) = x^2 g(x)=x2,则 y = sin ⁡ ( x 2 ) y = \sin(x^2) y=sin(x2)
y ′ = d d x sin ⁡ ( x 2 ) = cos ⁡ ( x 2 ) ⋅ d d x x 2 = cos ⁡ ( x 2 ) ⋅ 2 x = 2 x cos ⁡ ( x 2 ) y’ = \frac{d}{dx} \sin(x^2) = \cos(x^2) \cdot \frac{d}{dx} x^2 = \cos(x^2) \cdot 2x = 2x \cos(x^2) y=dxdsin(x2)=cos(x2)dxdx2=cos(x2)2x=2xcos(x2)

组合应用

h ( x ) = x 2 sin ⁡ x e x h(x) = \frac{x^2 \sin x}{e^x} h(x)=exx2sinx,使用以上法则求导:

  1. 先用商法则:
    h ( x ) = u ( x ) v ( x ) , u ( x ) = x 2 sin ⁡ x , v ( x ) = e x h(x) = \frac{u(x)}{v(x)}, \quad u(x) = x^2 \sin x, \quad v(x) = e^x h(x)=v(x)u(x),u(x)=x2sinx,v(x)=ex
    h ′ ( x ) = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v ( x ) 2 h'(x) = \frac{u'(x) v(x) – u(x) v'(x)}{v(x)^2} h(x)=v(x)2u(x)v(x)u(x)v(x)
  2. 再用乘积法则求 u ( x ) u(x) u(x) 的导数:
    u ′ ( x ) = ( x 2 sin ⁡ x ) ′ = ( x 2 ) ′ sin ⁡ x + x 2 ( sin ⁡ x ) ′ = 2 x sin ⁡ x + x 2 cos ⁡ x u'(x) = (x^2 \sin x)’ = (x^2)’ \sin x + x^2 (\sin x)’ = 2x \sin x + x^2 \cos x u(x)=(x2sinx)=(x2)sinx+x2(sinx)=2xsinx+x2cosx
  3. v ( x ) = e x v(x) = e^x v(x)=ex 的导数是:
    v ′ ( x ) = e x v'(x) = e^x v(x)=ex
  4. 合并结果:
    h ′ ( x ) = ( 2 x sin ⁡ x + x 2 cos ⁡ x ) e x − x 2 sin ⁡ x ⋅ e x ( e x ) 2 = e x ( 2 x sin ⁡ x + x 2 cos ⁡ x − x 2 sin ⁡ x ) e 2 x = 2 x sin ⁡ x + x 2 cos ⁡ x − x 2 sin ⁡ x e x = x sin ⁡ x + x 2 cos ⁡ x e x h'(x) = \frac{(2x \sin x + x^2 \cos x)e^x – x^2 \sin x \cdot e^x}{(e^x)^2} = \frac{e^x (2x \sin x + x^2 \cos x – x^2 \sin x)}{e^{2x}} = \frac{2x \sin x + x^2 \cos x – x^2 \sin x}{e^x} = \frac{x \sin x + x^2 \cos x}{e^x} h(x)=(ex)2(2xsinx+x2cosx)exx2sinxex=e2xex(2xsinx+x2cosxx2sinx)=ex2xsinx+x2cosxx2sinx=exxsinx+x2cosx

这样,我们就利用乘积法则、商法则和链式求导法则对复合函数进行了求导。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/150541.html

(0)
上一篇 2025-03-18 15:33
下一篇 2025-03-18 15:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信