大家好,欢迎来到IT知识分享网。
交换律:
a + b = b + a a + b = b + a a+b=b+a
a b = b a ab = ba ab=ba
结合律:
( a + b ) + c = a + ( b + c ) (a + b) + c = a + (b + c) (a+b)+c=a+(b+c)
( a b ) c = a ( b c ) (ab)c = a(bc) (ab)c=a(bc)
分配律:
a ( b + c ) = a b + a c a(b + c) = ab + ac a(b+c)=ab+ac
====================
a b = 1 = > a = 1 b ab = 1 => a = \frac{1}{b} ab=1=>a=b1
− 2 2 = − 4 -2^2 = -4 −22=−4
( − 2 ) 2 = 4 (-2)^2 = 4 (−2)2=4
( − 2 ) 3 = − 2 3 = − 8 (-2)^3 = -2^3 = -8 (−2)3=−23=−8
====================
( a + b ) ( c + d ) = ( a + b ) c + ( a + b ) d = a c + b c + a d + b d (a + b)(c + d) = (a + b)c + (a + b)d = ac + bc + ad +bd (a+b)(c+d)=(a+b)c+(a+b)d=ac+bc+ad+bd
完全平方公式:
( a + b ) 2 = a 2 + a b + a b + b 2 = a 2 + 2 a b + b 2 (a + b)^2 = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2 (a+b)2=a2+ab+ab+b2=a2+2ab+b2
( a − b ) 2 = a 2 − 2 a b + ( − b ) 2 = a 2 − 2 a b + b 2 (a – b)^2 = a^2 – 2ab + (-b)^2 = a^2 -2ab + b^2 (a−b)2=a2−2ab+(−b)2=a2−2ab+b2
====================
( a 1 x + b 1 ) ( a 2 x + b 2 ) (a_1x+b_1)(a_2x+b_2) (a1x+b1)(a2x+b2)
= a 1 a 2 x 2 + a 1 b 2 x + a 2 b 1 x + b 1 b 2 = a_1a_2x^2 + a_1b_2x + a_2b_1x + b_1b_2 =a1a2x2+a1b2x+a2b1x+b1b2
= a 1 a 2 x 2 + ( a 1 b 2 + a 2 b 1 ) x + b 1 b 2 = a_1a_2x^2 + (a_1b_2 + a_2b_1)x + b_1b_2 =a1a2x2+(a1b2+a2b1)x+b1b2
a 2 − b 2 = ( a − b ) ( a + b ) a^2 – b^2 = (a – b)(a + b) a2−b2=(a−b)(a+b)
a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3 – b^3 = (a – b)(a^2 + ab + b^2) a3−b3=(a−b)(a2+ab+b2)
a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3 + b^3 = (a + b)(a^2 – ab + b^2) a3+b3=(a+b)(a2−ab+b2)
( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a + b)^3 = a^3 +3a^2b + 3ab^2 + b^3 (a+b)3=a3+3a2b+3ab2+b3
( a + b ) 4 = a 4 + 4 a 3 b + 6 a 2 b 2 + 4 a b 3 + b 4 (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 (a+b)4=a4+4a3b+6a2b2+4ab3+b4
( a + b ) k = a k + k a k − 1 b + k ( k − 1 ) 1 ⋅ 2 a k − 2 b 2 (a + b)^k = a^k + ka^{k-1}b + \frac{k(k – 1)}{1 \cdot 2} a^{k-2}b^2 (a+b)k=ak+kak−1b+1⋅2k(k−1)ak−2b2
+ k ( k − 1 ) ( k − 2 ) 1 ⋅ 2 ⋅ 3 a k − 3 b 3 + \frac{k(k – 1)(k – 2)}{1 \cdot 2 \cdot 3} a^{k-3}b^3 +1⋅2⋅3k(k−1)(k−2)ak−3b3
+ . . . + k ( k − 1 ) . . . ( k − n + 1 ) 1 ⋅ 2 ⋅ 3 ⋅ . . . ⋅ n a k − n b n + … + \frac{k(k – 1)…(k – n + 1)}{1 \cdot 2 \cdot 3 \cdot … \cdot n} a^{k-n}b^n +...+1⋅2⋅3⋅...⋅nk(k−1)...(k−n+1)ak−nbn
+ . . . + k a b k − 1 + b k + … + kab^{k – 1} + b^k +...+kabk−1+bk
====================
a x 2 + b x + c = 0 ax^2 + bx + c = 0 ax2+bx+c=0
x = − b ± b 2 − 4 a c 2 a x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a} x=2a−b±b2−4ac
====================
a + c b = a b + c b \frac{a + c}{b} = \frac{a}{b} + \frac{c}{b} ba+c=ba+bc
a b + c d = a d + b c b d \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} ba+dc=bdad+bc
a b ⋅ c d = a c b d \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} ba⋅dc=bdac
− a b = − a b = a − b \frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b} b−a=−ba=−ba
a b c d = a b ⋅ d c = a d b c \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc} dcba=ba⋅cd=bcad
====================
( x 2 ) 3 = x ( 2 ∗ 3 ) = x 6 (x^2)^3 = x^{(2*3)} = x^6 (x2)3=x(2∗3)=x6
x 2 x 3 = x ( 2 + 3 ) = x 5 x^2x^3 = x^{(2+3)} = x^5 x2x3=x(2+3)=x5
x 1 2 = x x^{\frac{1}{2}} = \sqrt{x} x21=x
x 1 3 = x 3 x^{\frac{1}{3}} = \sqrt[3]{x} x31=3x
x − 2 = 1 x 2 = x 0 x 2 = x ( 0 − 2 ) x^{-2} = \frac{1}{x^2} = \frac{x^0}{x^2} = x^{(0-2)} x−2=x21=x2x0=x(0−2)
a b = a b \sqrt{ab} = \sqrt{a} \sqrt{b} ab=ab
a b = a b \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} ba=ba
( a b ) r = a r b r (ab)^r = a^rb^r (ab)r=arbr
( a b ) r = a r b r , b ≠ 0 (\frac{a}{b})^r = \frac{a^r}{b^r} , b \neq 0 (ba)r=brar,b=0
====================
1.if a < b a < b a<b, then a + c < b + c a + c < b + c a+c<b+c
2.if a < b a < b a<band c < d c < d c<d, then a + c < b + d a + c < b + d a+c<b+d
3.if a < b a < b a<band c > 0 c > 0 c>0, then a c < b c ac < bc ac<bc
4.if a < b a < b a<band c < 0 c < 0 c<0, then a c > b c ac > bc ac>bc
5.if 0 < a < b 0 < a < b 0<a<b, then 1 / a > 1 / b 1/a > 1/b 1/a>1/b
====================
a 2 = ∣ a ∣ \sqrt{a^2} = |a| a2=∣a∣
∣ a b ∣ = ∣ a ∣ ∣ b ∣ |ab| = |a||b| ∣ab∣=∣a∣∣b∣
∣ a b ∣ = ∣ a ∣ ∣ b ∣ , b ≠ 0 \left|\frac{a}{b}\right| = \frac{|a|}{|b|},b \neq 0 ∣∣ba∣∣=∣b∣∣a∣,b=0
∣ a n ∣ = ∣ a ∣ n |a^n| = |a|^n ∣an∣=∣a∣n
====================
suppose a > 0 a > 0 a>0 then
1. ∣ x ∣ = a |x| = a ∣x∣=a if and only if x = ± a x = \pm a x=±a
2. ∣ x ∣ < a |x| < a ∣x∣<a if and only if a < x < a a < x < a a<x<a
3. ∣ x ∣ > a |x| > a ∣x∣>a if and only if x > a x > a x>a or x < − a x < -a x<−a
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/151945.html