大家好,欢迎来到IT知识分享网。
Atom 是一种免费的开源文本及源代码编辑器,适用于 Java、PHP、Python 等多种编程语言。该文本编辑器支持用 Node.js 写成的插件。尽管 Atom 适用于多种语言,但它对 Python 情有独钟,其有趣的数据科学特性非常适合 Python。
Atom 的最大特点之一是支持 SQL 查询,但你需要安装 Data Atom 插件才能获取该特性。它支持 Microsoft SQL Server、MySQL 及 PostgreSQL。而且,你还可以可视化 Atom 的结果,无需打开其他任何窗口。
可以帮助 Python 数据科学家的另一个 Atom 插件是 Markdown Preview Plus。它可以为编辑、可视化 Markdown 文件提供支持,让你可以预览、渲染 LaTeX 公式等。
优点:
- 活跃的社区支持
- 与 Git 的完美集成
- 为管理多个项目提供支持
缺点:
- 在较老的 CPU 上运行可能会出现性能问题
- 可能遇到迁移问题
Jupyter Notebook
- 平台:Linux/macOS/Windows
- 官网:https://jupyter.org/
- 类型:基于 Web 的 IDE
Jupyter Netbook 起源于 2014 年的 Ipython,它是一种基于服务器-客户端结构的网页应用。Jupyter Netbook 允许我们通过「Notebook」创建和操作代码文件,并且采用一种即时运行的方法,这是 Jupyter Notebook 最重要的特性。对于 Python 数据科学家而言,Jupyter Notebook 基本上是必需品,因为它提供了最直观、最精炼的交互式数据科学环境。
对于刚入门的数据科学家而言,Jupyter 是最简单也最完美的工具。我们在写完一个代码片段后就能直接运行这些局部代码查看效果,因此它的交互效果是最好的。此外,Jupyter Notebook 中的单元可以选择代码或者文档,也就是说选择文档后可以直接按照 MarkDown 的语法写代码或整个文件的注释、心得和背景知识等。
通过使用 Matplotlib 和 Seaborn 等可视化工具,我们可以直接在代码单元下输出想要的可视化图信息。当然我们也可以将整个 Notebook 文件导出为 PDF、HTML 或纯 Python 代码文件,这非常有利于文件在不同平台间的传播,因此像谷歌的 Colab 等平台也都默认使用 Notebook 的这种形式。与 Ipython 一样,Jupyter Notebook 是一系列项目的总称,包括 Notebook、Console 和 Qt console 等。
优点:
- 允许使用 Notebook 直接创建博客或代码演示
- 确保可复现的研究与解释
- 在运行整体前可以运行并修正局部代码块
缺点:
- 复杂的安装过程(你也可以直接安装集成开发环境 Anoconda~)
PyCharm
- 平台:Linux/macOS/Windows
- 官网:https://www.jetbrains.com/pycharm/
- 类型:Python 专用 IDE
PyCharm 是 Python 的专用 IDE,地位类似于 Java 的 IDE Eclipse。功能齐全的集成开发环境同时提供收费版和免费版,即专业版和社区版。PyCharm 是安装最快的 IDE,且安装后的配置也非常简单,因此 PyCharm 基本上是数据科学家和算法工程师的首选 IDE。
对于喜欢 IPython 或 Anaconda 发行版的人而言,PyCharm 同样可以便捷地集成 Matplotlib 和 NumPy 等工具,这意味着我们在处理数据科学项目时可以便捷地使用数组查看器和交互式图表等。除此之外,IDE 还扩展了对 JavaScript 和 Angular JS 等语言的支持,这使得它同样也适合 Web 端的开发。
安装完成后,我们可以快速建立一个 Python 项目,并选择解释器和新的代码文件。可能我们会用 conda 等工具维护不同的环境,例如 TensorFlow 或 PyTorch 等,在建立新项目时只需要选择这些环境下的 Python 主程序就相当于选择了新环境。最后,除了提供直接 debug 和运行功能外,PyCharm 还提供对源代码和项目控制的支持。
优点:
- 活跃的社区支持
- 支持全面的 Python 开发,不论是数据科学还是非数据科学项目
- 新手和老兵都易于使用
- 快速 Reindexing
- 运行、编辑、debug Python 代码都不需要额外的支持
缺点:
- 加载可能比较慢
- 使用现有项目前可能需要调整默认设置
Redeo
- 平台:Linux/macOS/Windows
- 官网:https://rodeo.yhat.com/
- 类型:Python 专用 IDE
Redeo 的 logo 就暗示了这个 IDE 是专门为数据分析而开发的,如果用过 RStudio,你就会发现 Redeo 与它有很多相似的特征。对于那些不了解 RStudio 的人而言,你们只需要知道它是最流行的 R 语言集成开发环境。与 RStudio 一样,Rodeo 的窗口分为四部分,即代码文本编辑器、控制台、变量可视化环境和图形/库/文件的查看窗口。有意思的是,RStudio 和 Redeo 都与 MATLAB 有很多相似之处。
Redeo 的最大优势在于新手和老兵都能方便地使用。由于 Redeo 允许在写代码的同时查看变量和可视化等细节,它可以称得上是最好的数据科学 IDE 之一。此外,Redeo 还有内置的课程及辅助材料。
优点:
- 大量定制化设计
- 实时监控代码到底创建了些什么
- 通过自动补全和语法高亮,写代码会更快
缺点:
如果你也是看准了Python,想自学Python,在这里为大家准备了丰厚的免费学习大礼包,带大家一起学习,给大家剖析Python兼职、就业行情前景的这些事儿。
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化学习资料的朋友,可以戳这里无偿获取
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/155165.html