大家好,欢迎来到IT知识分享网。
1.基本方程式
圆柱坐标以 r 、 θ 、 z r、\theta、z r、θ、z确定空间一点位置,其与直角坐标系转化关系为:
{ x = r c o s θ y = r s i n θ z = z r = x 2 + y 2 θ = a r c t a n y x (1-1) \begin{cases} x=r cos\theta\\y=r sin \theta\\ z=z\\ r=\sqrt{x^2+y^2}\\ \theta=arctan \frac yx \end{cases}\tag{1-1} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧x=rcosθy=rsinθz=zr=x2+y2θ=arctanxy(1–1)
当忽略外力影响,即合外力为零时,有:
{ ∂ σ r ∂ r + ∂ τ z r ∂ z + σ r − σ θ r = 0 ∂ σ z ∂ z + ∂ τ r z ∂ r + τ r z r = 0 (1-2) \begin{cases} \frac{\partial \sigma_r}{\partial r}+\frac{\partial \tau_{zr}}{\partial z}+\frac{\sigma_r-\sigma_\theta}{r}=0\\[1.5ex] \frac{\partial \sigma_z}{\partial z}+\frac{\partial \tau_{rz}}{\partial r}+\frac{\tau_{rz}}{r}=0 \end{cases}\tag{1-2} ⎩⎨⎧∂r∂σr+∂z∂τzr+rσr−σθ=0∂z∂σz+∂r∂τrz+rτrz=0(1–2)
应变与位移的关系如下:
ε = { ε r ε θ ε z γ z r } = { ∂ u ∂ r u r ∂ w ∂ z ∂ w ∂ r + ∂ u ∂ z } (1-3) \varepsilon=\begin{Bmatrix} \varepsilon_r\\ \varepsilon_\theta \\ \varepsilon_z\\ \gamma_{zr} \end{Bmatrix}= \begin{Bmatrix} \frac{\partial u}{\partial r}\\[1.2ex] \frac u r \\[1.2ex] \frac{\partial w}{\partial z}\\[1.2ex] \frac{\partial w}{\partial r}+\frac{\partial u}{\partial z} \end{Bmatrix}\tag{1-3} ε=⎩⎪⎪⎨⎪⎪⎧εrεθεzγzr⎭⎪⎪⎬⎪⎪⎫=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∂r∂uru∂z∂w∂r∂w+∂z∂u⎭⎪⎪⎪⎪⎬⎪⎪⎪⎪⎫(1–3)
当引入热应力时,这里假设温度变化为 t ,并且 t 只是 r 的函数,即: t = t ( r ) t=t(r) t=t(r),与 z 轴无关。对于各向同性体,有: ε r 0 = ε θ 0 = ε z 0 = α t , γ z r 0 = 0 \varepsilon_{r0}=\varepsilon_{\theta0}=\varepsilon_{z0}=\alpha t,\gamma_{zr0}=0 εr0=εθ0=εz0=αt,γzr0=0。从而可得出应变公式为:
{ ε r = 1 E [ σ r − μ ( σ θ + σ z ) ] + α t ε θ = 1 E [ σ θ − μ ( σ r + σ z ) ] + α t ε z = 1 E [ σ z − μ ( σ r + σ θ ) ] + α t γ z r = τ z r G (1-4) \begin{cases} \varepsilon_r=\frac{1}{E}[\sigma_r-\mu(\sigma_\theta+\sigma_z)]+\alpha t\\[1.2ex] \varepsilon_\theta=\frac{1}{E}[\sigma_\theta-\mu(\sigma_r+\sigma_z)]+\alpha t\\[1.2ex] \varepsilon_z=\frac{1}{E}[\sigma_z-\mu(\sigma_r+\sigma_\theta)]+\alpha t\\[1.2ex] \gamma_{zr}=\frac{\tau_{zr}}{G} \end{cases}\tag{1-4} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧εr=E1[σr−μ(σθ+σz)]+αtεθ=E1[σθ−μ(σr+σz)]+αtεz=E1[σz−μ(σr+σθ)]+αtγzr=Gτzr(1–4)
将应力表示为应变与温差的函数:
{ σ r = E ( 1 + μ ) ( 1 − 2 μ ) [ ( 1 − μ ) ε r + μ ( ε θ + ε z ) ] − E α t 1 − 2 μ σ θ = E ( 1 + μ ) ( 1 − 2 μ ) [ ( 1 − μ ) ε θ + μ ( ε z + ε r ) ] − E α t 1 − 2 μ σ z = E ( 1 + μ ) ( 1 − 2 μ ) [ ( 1 − μ ) ε z + μ ( ε r + ε θ ) ] − E α t 1 − 2 μ τ z r = G γ z r = E 2 ( 1 + μ ) γ z r (1-5) \begin{cases} \sigma_r=\frac{E}{(1+\mu)(1-2\mu)}\left[(1-\mu)\varepsilon_r+\mu(\varepsilon_{\theta}+\varepsilon_z)\right]-\frac{E\alpha t}{1-2\mu}\\[1.2ex] \sigma_\theta=\frac{E}{(1+\mu)(1-2\mu)}\left[(1-\mu)\varepsilon_\theta+\mu(\varepsilon_{z}+\varepsilon_r)\right]-\frac{E\alpha t}{1-2\mu}\\[1.2ex] \sigma_z=\frac{E}{(1+\mu)(1-2\mu)}\left[(1-\mu)\varepsilon_z+\mu(\varepsilon_{r}+\varepsilon_\theta)\right]-\frac{E\alpha t}{1-2\mu}\\[1.2ex] \tau_{zr}=G\gamma_{zr}=\frac E{2(1+\mu)}\gamma_{zr} \end{cases} \tag{1-5} ⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧σr=(1+μ)(1−2μ)E[(1−μ)εr+μ(εθ+εz)]−1−2μEαtσθ=(1+μ)(1−2μ)E[(1−μ)εθ+μ(εz+εr)]−1−2μEαtσz=(1+μ)(1−2μ)E[(1−μ)εz+μ(εr+εθ)]−1−2μEαtτzr=Gγzr=2(1+μ)Eγzr(1–5)
可根据式(1-3)将式 (1-5) 整理成位移形式:
{ σ r = 2 G [ 1 − μ 1 − 2 μ ∂ u ∂ r + μ 1 − 2 μ ( u r + ∂ w ∂ z ) − β t ] σ θ = 2 G [ 1 − μ 1 − 2 μ u r + μ 1 − 2 μ ( ∂ w ∂ z + ∂ u ∂ r ) − β t ] σ z = 2 G [ 1 − μ 1 − 2 μ ∂ w ∂ z + μ 1 − 2 μ ( ∂ u ∂ r + u r ) − β t ] τ z r = G ( ∂ w ∂ r + ∂ u ∂ z ) (1-6) \begin{cases} \sigma_r=2G \left[ \frac{1-\mu}{1-2\mu}\frac{\partial u}{\partial r}+\frac{\mu}{1-2\mu}(\frac{u}{r}+\frac{\partial w}{\partial z})-\beta t \right]\\ \sigma_\theta=2G \left[ \frac{1-\mu}{1-2\mu}\frac{u}{ r}+\frac{\mu}{1-2\mu}(\frac{\partial w}{\partial z}+\frac{\partial u}{\partial r})-\beta t \right]\\ \sigma_z=2G \left[ \frac{1-\mu}{1-2\mu}\frac{\partial w}{\partial z}+\frac{\mu}{1-2\mu}(\frac{\partial u}{\partial r}+\frac ur)-\beta t \right]\\ \tau_{zr}=G(\frac{\partial w}{\partial r}+\frac{\partial u}{\partial z}) \end{cases}\tag{1-6} ⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧σr=2G[1−2μ1−μ∂r∂u+1−2μμ(ru+∂z∂w)−βt]σθ=2G[1−2μ1−μru+1−2μμ(∂z∂w+∂r∂u)−βt]σz=2G[1−2μ1−μ∂z∂w+1−2μμ(∂r∂u+ru)−βt]τzr=G(∂r∂w+∂z∂u)(1–6)
其中, β \beta β 为热应力系数, β = α E 1 − 2 μ \beta=\frac{\alpha E}{1-2\mu} β=1−2μαE。
2.空心圆筒热应力
令:
- 空心圆筒内径为 r i r_i ri,外径为 r e r_e re;
- 圆通两端为自由端,无外力作用;
- 温度变化场对称于中心轴。
假设:温度变化 t
仅是 r
的函数,与轴向坐标 z
无关,则;剪应力 τ z r = 0 \tau_{zr}=0 τzr=0,则式(1-2)可简化为:
{ ∂ σ r ∂ r + σ r − σ θ r = 0 ∂ σ z ∂ z = 0 (2-1) \begin{cases} \frac{\partial \sigma_r}{\partial r}+\frac{\sigma_r-\sigma_\theta}{r}=0\\[1.5ex] \frac{\partial \sigma_z}{\partial z}=0 \end{cases}\tag{2-1} ⎩⎨⎧∂r∂σr+rσr−σθ=0∂z∂σz=0(2–1)
根据式(1-6),式(2-1) 可整理为:
{ 2 G 1 − μ 1 − 2 μ ∂ 2 u ∂ r 2 + 2 G μ 1 − 2 μ ( 1 r ∂ u ∂ r − u r 2 ) + 2 G ( 1 r ∂ u ∂ r − u r 2 ) − β ∂ t ∂ r = 0 1 − μ 1 − 2 μ ∂ 2 w ∂ z 2 + μ 1 − 2 μ ∂ ∂ z ( ∂ u ∂ r + u r ) − β ∂ t ∂ z = 0 (2-2) \begin{cases} 2G\frac{1-\mu}{1-2\mu}\frac{\partial^2 u}{\partial r^2}+2G\frac{\mu}{1-2\mu}(\frac 1r \frac{\partial u}{\partial r}-\frac u{r^2})+2G(\frac 1r \frac{\partial u}{\partial r}-\frac u{r^2})-\beta\frac{\partial t}{\partial r}=0\\[2ex] \frac{1-\mu}{1-2\mu}\frac{\partial^2 w}{\partial z^2}+\frac{\mu}{1-2\mu}\frac{\partial}{\partial z}(\frac{\partial u}{\partial r}+\frac ur)-\beta \frac{\partial t}{\partial z}=0 \end{cases}\tag{2-2} ⎩⎨⎧2G1−2μ1−μ∂r2∂2u+2G1−2μμ(r1∂r∂u−r2u)+2G(r1∂r∂u−r2u)−β∂r∂t=01−2μ1−μ∂z2∂2w+1−2μμ∂z∂(∂r∂u+ru)−β∂z∂t=0(2–2)
考虑到轴对称特点,位移 u
、温度 t
仅是 r
的函数,位移 w
仅是 z
的函数,则式(2-2)可整理为:
{ d 2 u d r 2 + 1 r d u d r − u r 2 = 1 + μ 1 − μ α d t d r d 2 w d z 2 = 0 (2-3) \begin{cases} \frac{d^2 u}{d r^2}+\frac 1r \frac{d u}{d r}-\frac u{r^2}=\frac{1+\mu}{1-\mu}\alpha \frac{d t}{d r}\\[2ex] \frac{d^2 w}{d z^2}=0 \end{cases}\tag{2-3} ⎩⎨⎧dr2d2u+r1drdu−r2u=1−μ1+μαdrdtdz2d2w=0(2–3)
由于
d ε z d w = d 2 w d z 2 = 0 (2-4) \frac{d \varepsilon_z}{d w}=\frac{d^2 w}{d z^2}=0\tag{2-4} dwdεz=dz2d2w=0(2–4)
固轴向应变分量
ε z ≈ d w d z = k ( 任 一 常 数 ) (2-5) \varepsilon_z\approx\frac{d w}{d z}=k(任一常数)\tag{2-5} εz≈dzdw=k(任一常数)(2–5)
同时,式(2-3)第一项可改写为:
d d r [ 1 r d ( r u ) d r ] = 1 + μ 1 − μ α d t d r (2-6) \frac{d}{d r}[\frac 1r \frac{d(ru)}{d r}]=\frac{1+\mu}{1-\mu}\alpha \frac{d t}{d r}\tag{2-6} drd[r1drd(ru)]=1−μ1+μαdrdt(2–6)
对上式积分两次,有:
u = 1 + μ 1 − μ α r ∫ r i r e t r d r + c 1 r + c 2 r (2-7) u=\frac{1+\mu}{1-\mu}\frac{\alpha}{r}\int_{r_i}^{r_e}trdr+c_1r+\frac{c_2}{r}\tag{2-7} u=1−μ1+μrα∫riretrdr+c1r+rc2(2–7)
式(2-7)的微分形式为:
d u d r = 1 + μ 1 − μ α t + c 1 − c 2 r 2 (2-8) \frac{du}{dr}=\frac{1+\mu}{1-\mu}\alpha t+c_1-\frac{c_2}{r^2}\tag{2-8} drdu=1−μ1+μαt+c1−r2c2(2–8)
将式(2-7)、(2-8)代入式(1-6)中,再根据应力边界条件即可求得参数 c 1 、 c 2 c_1、c_2 c1、c2,进而求得应力微分方程。
相应地,对于:
- 圆柱热应力,只需令 r i = 0 r_i=0 ri=0 即可;
- 圆盘热应力,轴向尺寸较小,忽略其应力应变, σ z = 0 \sigma_z=0 σz=0;
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/158806.html