大家好,欢迎来到IT知识分享网。

拉普拉斯变换(拉氏变换)是一种解线性微分方程的简便运算方法,是分析研究线性动态系统的有力数学工具。简单点说,我们可以使用它去解线性微分方程,而控制工程中的大多数动态系统可由线性微分方程去描述,因此拉氏变换是控制工程领域必不可少的基础。
什么是拉氏变换呢?
首先,我们来看一下拉氏变换的定义——
设时间函数为f(t),t>0,则f(t)的拉普拉斯变换定义为:

其中,f(t)称为原函数,F(s)称为象函数。
一个函数可以进行拉氏变换的充要条件为:
(1)在t<0时,f(t)=0;
(2)在t≥0的任一有限区间内,f(t)是分段连续的;
(3)当t→﹢∞时,f(t)的增长速度不超过某一指数函数,即:

接下来为大家介绍几种常见的时间常数拉氏变换,大家在看下面几种时间常数拉氏变换的时候可将几个时间常数与这三个条件一一对应,有助于理解记忆。
1、单位脉冲函数
单位脉冲函数数学表达式为:

其对应的图像为:

我们来看一个脉冲信号:

从图中可看出,脉冲函数就像脉冲信号一样,在时间的一个微段dt内,信号强度快速增长,可达到无穷大,而单位脉冲函数指的是其微段dt与增长的高度的乘积为1,即h(dt)=1。
其拉氏变换为:

该函数有一个重要性质:

f(t)为任意连续函数,当f(t)=e^(-st)时,该性质即可看为单位脉冲函数的拉氏变换。
2、单位阶跃函数
单位阶跃函数的数学表达式为:

其函数图像为:

其拉氏变换为:

3、单位斜坡函数
单位斜坡函数的数学表达式为:

函数图像为:

其拉氏变换为:

其被积函数为幂函数与指数函数乘积,使用分部积分法求解(反对幂三指),这只是推到过程,我们使用的时候只需记住t的拉氏变换为1/s^2即可。
4、单位加速度函数
单位加速度函数的数学表达式为:

其函数图像为:

其拉氏变换为:

求解过程与单位斜坡函数的拉氏变换求解过程相同,这里只需记住1/2T^2的拉氏变换为1/s^3。
5、指数函数
指数函数的数学表达式为:

其函数图像为:

其拉氏变换为:

求解过程为凑微分法。
6、正弦函数
正弦函数的数学表达式为:

其拉氏变换为:

求解时先使用欧拉公式将正弦函数变为指数函数,再凑微分,欧拉公式为:

7、余弦函数
余弦函数的数学表达式为:

其拉氏变换为:

8、幂函数
幂函数的数学表达式为:

其拉氏变换为:

求解时使用换元法,令u=st。
将n=0,1,2带入即为单位阶跃函数、单位斜坡函数与单位加速度函数的拉氏变换公式。
以上就是本期的知识分享,希望给大家学习上带来帮助。
本文作者:知识旅途,机械知网:分享知识,传播价值
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/172103.html