数仓为什么要分层?

数仓为什么要分层?总的来说 数仓分层是为了解耦 经典的数仓分层 下面这些层次英文缩写可能在其他公司叫法不一样 但是大体上分为以下几个层次 ODS 抽取的原始业务数据 结构一般和原始业务数据库表结构或者抽取的业务日志数据结构保持一致

大家好,欢迎来到IT知识分享网。

总的来说:数仓分层是为了解耦。

经典的数仓分层:

下面这些层次英文缩写可能在其他公司叫法不一样,但是大体上分为以下几个层次:

数仓为什么要分层?

ODS:抽取的原始业务数据,结构一般和原始业务数据库表结构或者抽取的业务日志数据结构保持一致。一句话:从业务系统增量抽取,数据不做清洗转换,与业务系统数据模型保持一致。

DWS:根据ODS层,增加一些维度信息,过滤一些异常数据。为DW层提供来源明细数据,提供业务系统细节数据的长期沉淀,为未来分析类需求的扩展提供历史数据支撑。

DW:模型层,根据DWS层数据,按各个业务需求,以某个维度ID进行粗粒度汇总聚合。此层一般会根据数仓涉及的业务发展或者主数据的建立等,抽象出一些公用的聚合汇总模型

APP:应用层/指标层/报表层,每个公司的叫法不一样,一般指根据特定的某个应用或者报表进行的数据指标开发汇总。

数仓为什么分层:

数据仓库分层原因可以概括为以下4个方面:

数仓为什么要分层?

  1. 用空间换时间:数仓的发展已经几十年了,在大数据技术出现之前,我们一般采用Oracle等一些关系型数据库来做数仓,但随着数据量的发展,特别是电信和银行业务的快速发展,在进行一个数仓应用开发过程中,我们需要分很多步骤来进行,所以会考虑用空间来换时间,包括现在市面上也会有一些用空间换时间这样的OLAP产品。
  2. 减少重复开发:可以把一些指标用到的汇总数据进行抽象,建立一个或者多个模型,这些模型可以支撑我们建立多个数仓报表,这一步需要对业务非常了解,不然就会出现上面问题说的“ 还会经常有多层数据重复?”
  3. 复杂的问题简单化:做过传统数仓的都知道,以前Oracle的存储过程会写几千行,所以现在我们一般很少写几千行的业务ETL逻辑了,而是分为多个ETL过程,从明细层到应用层进行逻辑拆解,中间也会进行一些逻辑合并,形成模型层。
  4. 数据安全:通过分层,可以更方便地对不同层,不同的数据模型进行权限管理,特定业务场景下,对不同的开发人员和业务人员屏蔽一些敏感的数据。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/188580.html

(0)
上一篇 2025-09-21 08:26
下一篇 2025-09-21 08:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信