大家好,欢迎来到IT知识分享网。
具有相同动态特性或者说具有相同传递函数的所有不同物理结构、不同工作原理的元器件,被认为是同一环节,即环节是按动态特性对控制系统各部分进行分类的。应用环节的概念,则物理结构上千差万别的控制系统都是由为数不多的某些环节组成的。典型环节归纳如下:
1.比例环节(放大环节)
2.惯性环节
τ d d t y ( t ) + y ( t ) = K u ( t ) \tau \frac{d}{dt}y(t)+y(t)=Ku(t) τdtdy(t)+y(t)=Ku(t)
G ( s ) = Y ( s ) U ( s ) = K τ s + 1 G(s)=\frac {Y(s)}{U(s)}=\frac {K}{\tau s+1} G(s)=U(s)Y(s)=τs+1K
其中 τ − 时 间 常 数 , K − 比 例 系 数 \tau -时间常数,K-比例系数 τ−时间常数,K−比例系数
惯性环节输出量不能立即跟随输入量的变化,存在时间上的延迟,可以用τ来度量。
- 惯性环节的阶跃响应:令u(t)=1(t)
U ( s ) = 1 s U(s)=\frac 1{s} U(s)=s1
Y ( s ) = U ( s ) G ( s ) = 1 s ∗ K τ s + 1 Y(s)=U(s)G(s)=\frac 1{s}*\frac K{\tau s+1} Y(s)=U(s)G(s)=s1∗τs+1K
且已知 L [ 1 ( t ) ] = 1 s , L [ e − α t ] = 1 s + α L[1(t)]=\frac 1{s},L[e^{-\alpha t}]=\frac 1{s+\alpha} L[1(t)]=s1,L[e−αt]=s+α1
则将上式分解成两项之和为
Y ( s ) = 1 s ∗ K τ s + 1 = A s + B s + 1 τ Y(s)=\frac 1{s}*\frac K{\tau s+1}=\frac A{s}+\frac B{s+\frac 1{\tau}} Y(s)=s1∗τs+1K=sA+s+τ1BA = s Y ( s ) ∣ s = 0 = K τ s + 1 ∣ s = 0 = K \left.A=sY(s) \right| _{s=0} =\left.\frac K{\tau s+1} \right| _{s=0}=K A=sY(s)∣s=0=τs+1K∣∣∣∣s=0=K
B = ( s + 1 τ ) Y ( s ) ∣ s = − 1 τ = K τ s ∣ s = − 1 τ = − K \left.B=(s+\frac 1{\tau})Y(s) \right| _{s=-\frac 1{\tau}}=\left.\frac{K}{\tau s} \right| _{s=-\frac 1{\tau}}=-K B=(s+τ1)Y(s)∣∣∣∣s=−τ1=τsK∣∣∣∣s=−τ1=−K
即
Y ( s ) = K ( 1 s − 1 s + 1 τ ) Y(s)=K(\frac 1{s}-\frac 1{s+\frac 1{\tau}}) Y(s)=K(s1−s+τ11)
再作拉氏反变换得
y ( t ) = L − 1 [ Y ( s ) ] = K ( 1 − e − t τ ) y(t)=L^{-1}[Y(s)]=K(1-e^{-\frac t{\tau}}) y(t)=L−1[Y(s)]=K(1−e−τt)
3.积分环节
d d t y ( t ) = K u ( t ) 或 y ( t ) = K ∫ u ( t ) d t \frac {d}{dt}y(t)=Ku(t) 或 y(t)=K \int u(t)dt dtdy(t)=Ku(t)或y(t)=K∫u(t)dt
作拉氏变换得
s Y ( s ) = K U ( s ) sY(s)=KU(s) sY(s)=KU(s)
G ( s ) = Y ( s ) U ( s ) = K s = 1 T s ( 有 时 令 K = 1 T ) G(s)=\frac{Y(s)}{U(s)}=\frac {K}{s}=\frac 1{Ts}(有时令K=\frac 1{T}) G(s)=U(s)Y(s)=sK=Ts1(有时令K=T1)
K-比例系数,T-积分时间常数
- 积分环节的阶跃响应:令u(t)=1(t),
U ( s ) = 1 s U(s)=\frac 1{s} U(s)=s1
Y ( s ) = U ( s ) G ( s ) = K s 2 Y(s)=U(s)G(s)=\frac K{s^2} Y(s)=U(s)G(s)=s2K
y ( t ) = L − 1 [ Y ( s ) ] = K t y(t)=L^{-1}[Y(s)]=Kt y(t)=L−1[Y(s)]=Kt
4.微分环节
c ( t ) = τ d d t r ( t ) c(t)=\tau \frac{d}{dt}r(t) c(t)=τdtdr(t)
τ – 时间常数,
G ( s ) = C ( s ) R ( s ) = τ s G(s)=\frac{C(s)}{R(s)}=\tau s G(s)=R(s)C(s)=τs
纯微分环节:
G ( s ) = τ s G(s)=\tau s G(s)=τs
一阶微分环节:
G ( s ) = τ s + 1 G(s)=\tau s+1 G(s)=τs+1
二阶微分环节:
G ( s ) = τ 2 s 2 + 2 ζ τ s + 1 , ( 0 < ζ < 1 ) G(s)=\tau^2s^2+2\zeta \tau s+1 , (0<\zeta<1) G(s)=τ2s2+2ζτs+1,(0<ζ<1)
- 微分环节的阶跃响应:令r(t)=1(t)
R ( s ) = 1 s R(s)=\frac 1{s} R(s)=s1
G ( s ) = τ s G(s)=\tau s G(s)=τs
C ( s ) = τ C(s)=\tau C(s)=τ
则
c ( t ) = τ δ ( t ) c(t)=\tau \delta(t) c(t)=τδ(t)
注:δ(t)是脉冲函数,δ(0)=∞,δ(t!=0)=0,在整个时间轴上的积分是1 - 微分环节实例
①RC串联电路
Y ( s ) = R R + 1 C s U ( s ) = R C s R C s + 1 U ( s ) Y(s)=\frac R{R+\frac 1{Cs}}U(s)=\frac{RCs}{RCs+1}U(s) Y(s)=R+Cs1RU(s)=RCs+1RCsU(s)
G ( s ) = Y ( s ) U ( s ) = T s T s + 1 G(s)=\frac{Y(s)}{U(s)}=\frac{Ts}{Ts+1} G(s)=U(s)Y(s)=Ts+1Ts
其中T=RC – 时间常数
②实际的比例微分电路
U o ( s ) = R 2 Z + R 2 U i ( s ) U_o(s)=\frac{R_2}{Z+R_2}U_i(s) Uo(s)=Z+R2R2Ui(s)
其中 Z = R 1 1 C s R 1 + 1 C s = R 1 R 1 C s + 1 Z=\frac{R_1 \frac 1{Cs}}{R_1+\frac 1{Cs}}=\frac{R_1}{R_1Cs+1} Z=R1+Cs1R1Cs1=R1Cs+1R1
G ( s ) = U o ( s ) U i ( s ) = α ( T s + 1 α T s + 1 ) G(s)=\frac{U_o(s)}{U_i(s)}=\alpha(\frac{Ts+1}{\alpha Ts+1}) G(s)=Ui(s)Uo(s)=α(αTs+1Ts+1)
其中
T = R 1 C , α = R 2 R 1 + R 2 T=R_1C,\alpha = \frac {R_2}{R_1+R_2} T=R1C,α=R1+R2R2
5.振荡环节
- 振荡环节的阶跃响应:令0<ζ<1,K=1,r(t)=1(t),
R ( s ) = 1 s R(s)=\frac 1{s} R(s)=s1
G ( s ) = K ω n 2 s 2 + 2 ζ ω n s + ω n 2 G(s)=\frac{K\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2} G(s)=s2+2ζωns+ωn2Kωn2
C ( s ) = ω n 2 s ( s 2 + 2 ζ ω n s + ω n 2 ) C(s)=\frac{\omega_n^2}{s(s^2+2\zeta\omega_ns+\omega_n^2)} C(s)=s(s2+2ζωns+ωn2)ωn2
类似惯性环节的阶跃响应,需要对分式分母作因式分解,令:
s 2 + 2 ζ ω n s + ω n 2 = 0 s^2+2\zeta \omega_ns+\omega_n^2=0 s2+2ζωns+ωn2=0
则复数
s = − ζ ω n ± ζ 2 − 1 ω n s=-\zeta\omega_n \pm \sqrt{\zeta^2-1}\omega_n s=−ζωn±ζ2−1ωn
s = − ζ ω n ± j 1 − ζ 2 ω n = − ζ ω n ± j ω d s=-\zeta\omega_n \pm j\sqrt{1-\zeta^2}\omega_n=-\zeta\omega_n \pm j\omega_d s=−ζωn±j1−ζ2ωn=−ζωn±jωd
C ( s ) = ω n 2 s ( s + ζ ω n + j ω d ) ( s + ζ ω n − j ω d ) C(s)=\frac{\omega_n^2}{s(s+\zeta\omega_n+j\omega_d)(s+\zeta\omega_n-j\omega_d)} C(s)=s(s+ζωn+jωd)(s+ζωn−jωd)ωn2
可化成以下两种形式:
①套用L[e-αtsinωt]、L[e-αtcosωt]
C ( s ) = ω n 2 s [ ( s + ζ ω n ) 2 + ω d 2 ] = A s + B ( s + ζ ω n ) ( s + ζ ω n ) 2 + ω d 2 + C ω d ( s + ζ ω n ) 2 + ω d 2 C(s)=\frac{\omega_n^2}{s[(s+\zeta\omega_n)^2+\omega_d^2]}=\frac{A}{s}+\frac{B(s+\zeta\omega_n)}{(s+\zeta\omega_n)^2+\omega_d^2}+\frac{C\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} C(s)=s[(s+ζωn)2+ωd2]ωn2=sA+(s+ζωn)2+ωd2B(s+ζωn)+(s+ζωn)2+ωd2Cωd
C ( s ) = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ω d 2 − ζ ω n ω d ω d ( s + ζ ω n ) 2 + ω d 2 C(s)=\frac 1{s}-\frac{s+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_d^2}-\frac{\zeta\omega_n}{\omega_d}\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2} C(s)=s1−(s+ζωn)2+ωd2s+ζωn−ωdζωn(s+ζωn)2+ωd2ωd
c ( t ) = 1 − e − ζ ω n t c o s ω d t − ζ ω n ω d e − ζ ω n t s i n ω d t = 1 − e − ζ ω n t ( c o s ω d t + ζ 1 − ζ 2 s i n ω d t ) = 1 − e − ζ ω n t 1 − ζ 2 ( 1 − ζ 2 c o s ω d t + ζ s i n ω d t ) = 1 − e − ζ ω n t 1 − ζ 2 s i n ( ω d t + ϕ ) c(t)=1-e^{-\zeta\omega_nt} cos\omega_dt-\frac{\zeta\omega_n}{\omega_d}e^{-\zeta\omega_nt}sin\omega_dt =1-e^{-\zeta\omega_nt}(cos\omega_dt+{\frac{\zeta}{\sqrt{1-\zeta^2}}sin\omega_dt}) =1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}(\sqrt{1-\zeta^2}cos\omega_dt+\zeta sin\omega_dt) =1-\frac{e^{-\zeta\omega_nt}}{\sqrt{1-\zeta^2}}sin(\omega_dt+\phi) c(t)=1−e−ζωntcosωdt−ωdζωne−ζωntsinωdt=1−e−ζωnt(cosωdt+1−ζ2ζsinωdt)=1−1−ζ2e−ζωnt(1−ζ2cosωdt+ζsinωdt)=1−1−ζ2e−ζωntsin(ωdt+ϕ)
令 ϕ = a r c t g 1 − ζ 2 ζ \phi=arctg\frac{\sqrt{1-\zeta^2}}{\zeta} ϕ=arctgζ1−ζ2
②套用L[1(t)],L[e-αt],用留数的方法求
C ( s ) = A s + B s + ζ ω n + j ω d + C s + ζ ω n − j ω d C(s)=\frac{A}{s}+\frac{B}{s+\zeta\omega_n+j\omega_d}+\frac{C}{s+\zeta\omega_n-j\omega_d} C(s)=sA+s+ζωn+jωdB+s+ζωn−jωdC
6.纯滞后环节
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/118264.html






