RPN(区域生成网络)

RPN(区域生成网络)首先我们知道有 HxW 个结果 我们随机取一点 它跟原图肯定是有个一一映射关系的 由于原图和特征图大小不同 所以特征图上的一个点对应原图肯定是一个框 然而这个框很小 比如说 8×8 这里 8 是指原图

大家好,欢迎来到IT知识分享网。

RPN全称是Region Proposal Network,Region Proposal的中文意思是“区域选取”,也就是“提取候选框”的意思,所以RPN就是用来提取候选框的网络。

1. RPN的意义

      RPN第一次出现在世人眼中是在Faster RCNN这个结构中,专门用来提取候选框,在RCNN和Fast RCNN等物体检测架构中,用来提取候选框的方法通常是Selective Search,是比较传统的方法,而且比较耗时,在CPU上要2s一张图。所以作者提出RPN,专门用来提取候选框,一方面RPN耗时少,另一方面RPN可以很容易结合到Fast RCNN中,称为一个整体。

 

图1 Faster RCNN的整体结构

  我们不难发现,RPN在整个Faster RCNN中的位置,处于中间部分;

2. RPN的运作机制

我们先来看看Faster RCNN原文中的图: 

RPN(区域生成网络)

图2 RPN的结构

  图2展示了RPN的整个过程,一个特征图经过sliding window处理,得到256维特征,然后通过两次全连接得到结果2k个分数和4k个坐标;相信大家一定有很多不懂的地方;我把相关的问题一一列举:

      首先回答第一个问题,RPN的输入特征图就是图1中Faster RCNN的公共Feature Map,也称共享Feature Map,主要用以RPN和RoI Pooling共享;

  对于第二个问题,我们可以把3×3的sliding window看作是对特征图做了一次3×3的卷积操作,最后得到了一个channel数目是256的特征图,尺寸和公共特征图相同,我们假设是256 x (H x W);

图3 问题1,2,3的解答描述图

RPN(区域生成网络)

 图4 问题4,5的解答描述图

3. RPN的整个流程回顾

        最后我们再把RPN整个流程走一遍,首先通过一系列卷积得到公共特征图,假设他的大小是N x 16 x 16,然后我们进入RPN阶段,首先经过一个3 x 3的卷积,得到一个256 x 16 x 16的特征图,也可以看作16 x 16个256维特征向量,然后经过两次1 x 1的卷积,分别得到一个18 x 16 x 16的特征图,和一个36 x 16 x 16的特征图,也就是16 x 16 x 9个结果,每个结果包含2个分数和4个坐标,再结合预先定义的Anchors,经过后处理,就得到候选框;整个流程如图5:
RPN(区域生成网络)

图5 RPN整个流程 

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/127030.html

(0)
上一篇 2025-09-14 12:26
下一篇 2025-09-14 12:33

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信