SIFT/SURF/ FAST / BREIF / ORB特征

SIFT/SURF/ FAST / BREIF / ORB特征本文介绍了几种常见的图像特征检测方法 包括 ORB OrientedFAST FAST BREIF 以及 SIFT 和 SURF

大家好,欢迎来到IT知识分享网。

ORB特征,Oriented FAST and Rotated BRIEF
具有局部不变性的特征,从它的名字中可以看出它是对FAST特征点与BREIF特征描述子的一种结合与改进,这个算法是在2011年一篇名为“ORB:An Efficient Alternative to SIFT or SURF”的文章中提出。就像文章题目所写一样,ORB是除了SIFT与SURF外一个很好的选择,而且它有很高的效率,最重要的一点是它是免费的,SIFT与SURF都是有专利的,你如果在商业软件中使用,需要购买许可。

FAST算法原理,Features From Accelerated Segment Test
有很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测),可以根据图像局部的自相关函数来求得Harris角点(Harris角点),后面又提到了两种十分优秀的特征点及它们的描述方法SIFT特征与SURF特征。SURF特征算是为了提高运算效率对SIFT特征的一种近似,虽然在有些实验环境中已经达到了实时,但是我们实践工程应用中,特征点的提取与匹配只是整个应用算法中的一部分,所以我们对于特征点的提取必须有更高的要求,从这一点来看前面介绍的的那些特征点方法都不可取。

      为了解决这个问题,Edward Rosten和Tom Drummond在2006年发表的“Machine learning for high-speed corner detection[1]”文章中提出了一种FAST特征,并在2010年对这篇论文作了小幅度的修改后重新发表[2]。FAST的全称为Features From Accelerated Segment Test。Rosten等人将FAST角点定义为:若某像素点与其周围领域内足够多的像素点处于不同的区域,则该像素点可能为角点。也就是某些属性与众不同,考虑灰度图像,即若该点的灰度值比其周围领域内足够多的像素点的灰度值大或者小,则该点可能为角点。

BRIEF的基本原理,Binary Robust Independent Elementary Features
我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间。类
似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间。如果一幅图像中有1000个特征点(不
要惊讶,这是很正常的事),那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用,尤其
是嵌入式的应用,这样的特征描述子显然是不可行的。而且,越占有越大的空间,意味着越长的匹配时间。
但是实际上SFIT或SURF的特征描述子中,并不是所有维都在匹配中有着实质性的作用。我们可以用PCA、LDA等特征降维的方法来压缩特征描述子的维度。还有一些算法,例如LSH,将SIFT的特征描述子转换为一个二值的码串,然
后这个码串用汉明距离进行特征点之间的匹配。这种方法将大大提高特征之间的匹配,因为汉明距离的计算可以用
异或操作然后计算二进制位数来实现,在现代计算机结构中很方便。下面来们提取一种二值码串的特征描述子。

BRIEF[1]应运而生,它提供了一种计算二值串的捷径,而并不需要去计算一个类似于SIFT的特征描述子。它需要先平滑图像,然后在特征点周围选择一个Patch,在这个Patch内通过一种选定的方法来挑选出来nd个点对。然后对于每一个点对(p,q),我们来比较这两个点的亮度值,如果I(p)>I(q)则这个点对生成了二值串中一个的值为1,如果I(p)<I(q),则对应在二值串中的值为-1,否则为0。所有nd个点对,都进行比较之间,我们就生成了一个nd长的二进制串。

对于nd的选择,我们可以设置为128,256或512,这三种参数在OpenCV中都有



















免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/128810.html

(0)
上一篇 2025-08-28 21:15
下一篇 2025-08-28 21:20

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信