带你一次搞懂点积(内积)、叉积(外积)

带你一次搞懂点积(内积)、叉积(外积)本文详细介绍了点积 内积 叉积 外积 元素积等常见概念的的定义 并配以举例说明及 numpy 实现

大家好,欢迎来到IT知识分享网。

1. 向量的点积与叉积

1.1 向量的点积

数量积又称标量积(Scalar product)点积(Dot product),在欧几里得空间(Euclidean space)中称为内积(Inner product),对应元素相乘相加,结果是一个标量(即一个数)

对于向量 a ⃗ = ( a 1 , a 2 ) , b ⃗ = ( b 1 , b 2 ) \vec{a}=\left( {
{a}_{1}},{
{a}_{2}} \right),\vec{b}=\left( {
{b}_{1}},{
{b}_{2}} \right)
a
=
(a1,a2)b
=
(b1,b2)
,两者的数量积: a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 \vec{a}\cdot \vec{b}= {
{a}_{1}}{
{b}_{1}}+{
{a}_{2}}{
{b}_{2}}
a
b
=
a1b1+a2b2
a ⃗ ⋅ b ⃗ \vec{a}\cdot \vec{b} a
b
的几何意义是 a ⃗ \vec{a} a
b ⃗ \vec{b} b
方向上的投影(仅在二维、三维空间向量有意义): a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ c o s θ \vec{a}\cdot \vec{b}=\left| {\vec{a}} \right|* | {\vec{b}} | *cos\theta a
b
=
a
b
cosθ
其中, ∣ a ⃗ ∣ \left| {\vec{a}} \right| a
∣ b ⃗ ∣ |{\vec{b}}| b
分别为向量 a ⃗ \vec{a} a
b ⃗ \vec{b} b
的模, θ \theta θ为向量 a ⃗ \vec{a} a
b ⃗ \vec{b} b
的夹角。

对于 n n n维向量 a ⃗ = ( a 1 , a 1 , . . . , a n )  , b ⃗ = ( b 1 , b 2 , . . . , b n ) \vec{a}=\left( {
{a}_{1}},{
{a}_{1}},…, {
{a}_{n}} \right)~,\vec{b}=\left( {
{b}_{1}},{
{b}_{2}} ,…,{
{b}_{n}}\right)
a
=
(a1,a1,,an) b
=
(b1,b2,,bn)
,两者的数量积: a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + . . . + a n b n \vec{a}\cdot \vec{b}= {
{a}_{1}}{
{b}_{1}}+{
{a}_{2}}{
{b}_{2}}+…+{
{a}_{n}}{
{b}_{n}}
a
b
=
a1b1+a2b2++anbn

numpy中 使用np.dotnumpy.inner()实现向量的点积

举例 a ⃗ = ( 1 , 2 , 3 )          b ⃗ = ( 4 , 5 , 6 ) \vec{a} = (1,2,3) \;\;\;\; \vec{b} = (4,5,6) a
=
(1,2,3)b
=
(4,5,6)
a ⃗ ⋅ b ⃗ = 1 × 4 + 2 × 5 + 3 × 6 = 32 \vec{a}\cdot \vec{b}= 1\times 4 + 2 \times 5 +3\times 6 = 32 a
b
=
1×4+2×5+3×6=32

import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6])  数量积 使用np.dot或np.inner print(np.dot(a,b)) 

1.2 向量的叉积

向量积又称矢量积(Vector product)叉积(Cross product)外积(Outer product)结果是一个向量

对于向量 a ⃗ = ( a 1 , a 2 , a 3 )   b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left( {
{a}_{1}},{
{a}_{2}}, {
{a}_{3}} \right)~\vec{b}=\left( {
{b}_{1}},{
{b}_{2}} ,{
{b}_{3}}\right)
a
=
(a1,a2,a3) b
=
(b1,b2,b3)
,两者的叉积为 a ⃗ \vec{a} a
b ⃗ \vec{b} b
的法向量,该向量垂直于 a ⃗ \vec{a} a
b ⃗ \vec{b} b
构成的平面。 a ⃗ × b ⃗ = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ( a 2 b 3 − b 2 a 3 ) i ⃗ − ( a 1 b 3 − b 1 a 3 ) j ⃗ + ( a 1 b 2 − b 1 a 2 ) k ⃗ \vec{a} \times \vec{b}= \begin{vmatrix}i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} = (a_2b_3-b_2a_3)\vec{i} – (a_1b_3-b_1a_3)\vec{j}+(a_1b_2-b_1a_2)\vec{k} a
×
b
=

ia1b1ja2b2ka3b3
=
(a2b3b2a3)i
(a1b3b1a3)j
+
(a1b2b1a2)k
其中, i , j , k i,j,k ijk分别是 X , Y , Z X,Y,Z XYZ轴方向的单位向量.

该向量的模 ∣ a ⃗ × b ⃗ ∣ = ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ s i n θ |\vec{a} \times \vec{b}| =\left| {\vec{a}} \right|*| {\vec{b}} |*sin\theta a
×
b
=
a
b
sinθ
其中, ∣ a ⃗ ∣ \left| {\vec{a}} \right| a
∣ b ⃗ ∣ |{\vec{b}}| b
分别为向量 a ⃗ \vec{a} a
b ⃗ \vec{b} b
的模, θ \theta θ为向量 a ⃗ \vec{a} a
b ⃗ \vec{b} b
的夹角。

即,叉积的长度 ∣ a ⃗ × b ⃗ ∣ |\vec{a} \times \vec{b}| a
×
b
为向量 a ⃗ \vec{a} a
b ⃗ \vec{b} b
共起点时,构成平行四边形的面积。

numpy中 使用np.cross实现向量的叉积

举例 a ⃗ = ( 1 , 2 , 3 )          b ⃗ = ( 4 , 5 , 6 ) \vec{a} = (1,2,3) \;\;\;\; \vec{b} = (4,5,6) a
=
(1,2,3)b
=
(4,5,6)
a ⃗ ⋅ b ⃗ = ( 2 × 6 − 3 × 5 , 4 × 3 − 1 × 6 , 1 × 5 − 2 × 4 ) = ( − 3 , 6 , − 3 ) \vec{a}\cdot \vec{b}=(2\times 6 -3\times 5 , 4 \times 3 – 1\times 6,1\times 5 – 2 \times 4)=(-3,6,-3) a
b
=
(2×63×5,4×31×6,1×52×4)=(3,6,3)

import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6])  叉积 使用np.cross print(np.cross(a,b)) 

点积与叉积小结

名称 点积/数量积/标量积/内积/ 叉积/向量积/矢量积/外积
输入(以 R 3 R^3 R3为例) a ⃗ = ( a 1 , a 2 , a 3 ) , b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left( {
{a}_{1}},{
{a}_{2}}, {
{a}_{3}} \right),\vec{b}=\left( {
{b}_{1}},{
{b}_{2}} ,{
{b}_{3}}\right)
a
=
(a1,a2,a3),b
=
(b1,b2,b3)
a ⃗ = ( a 1 , a 2 , a 3 ) , b ⃗ = ( b 1 , b 2 , b 3 ) \vec{a}=\left( {
{a}_{1}},{
{a}_{2}}, {
{a}_{3}} \right),\vec{b}=\left( {
{b}_{1}},{
{b}_{2}} ,{
{b}_{3}}\right)
a
=
(a1,a2,a3),b
=
(b1,b2,b3)
运算 a ⃗ ⋅ b ⃗ = a 1 b 1 + a 2 b 2 + a 3 b 3 \vec{a}\cdot \vec{b}= {
{a}_{1}}{
{b}_{1}}+{
{a}_{2}}{
{b}_{2}}+{
{a}_{3}}{
{b}_{3}}
a
b
=
a1b1+a2b2+a3b3
a ⃗ × b ⃗ = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ \vec{a} \times \vec{b}=\begin{vmatrix}i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ \end{vmatrix} a
×
b
=

ia1b1ja2b2ka3b3
输出 数值(标量): a ⃗ \vec{a} a
b ⃗ \vec{b} b
方向上的投影与 ∣ b ⃗ ∣ |\vec{b}| b
的乘积,即 ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ c o s θ | \vec{a} |* | \vec{b}|*cos\theta a
b
cosθ
向量(矢量): a ⃗ \vec{a} a
b ⃗ \vec{b} b
的法向量,该向量的模为 ∣ a ⃗ ∣ ∗ ∣ b ⃗ ∣ ∗ s i n θ | \vec{a} |* | \vec{b}|*sin\theta a
b
sinθ

注:数量、向量常用于数学;而标量、矢量常用于物理

2 矩阵的点积与叉积

2.1 矩阵的点积

对于 A A A矩阵( m × s m \times s m×s阶), B B B矩阵( s × n s \times n s×n阶)(A的列数与B的行数相等),
A = [ a 11 a 12 ⋯ a 1 s a 21 a 22 ⋯ a 2 s ⋯ ⋯ ⋱ ⋮ a m 1 a m 2 ⋯ a m s ]       B = [ b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋯ ⋯ ⋱ ⋮ b s 1 b s 2 ⋯ b s n ] A=\left[ \begin{matrix} {
{a}_{11}} & {
{a}_{12}} & \cdots & {
{a}_{1s}} \\ {
{a}_{21}} & {
{a}_{22}} & \cdots & {
{a}_{2s}} \\ \cdots & \cdots & \ddots & \vdots \\ {
{a}_{m1}} & {
{a}_{m2}} & \cdots & {
{a}_{ms}} \\ \end{matrix} \right]~~~~~B=\left[ \begin{matrix} {
{b}_{11}} & {
{b}_{12}} & \cdots & {
{b}_{1n}} \\ {
{b}_{21}} & {
{b}_{22}} & \cdots & {
{b}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {
{b}_{s1}} & {
{b}_{s2}} & \cdots & {
{b}_{sn}} \\ \end{matrix} \right]
A=
a11a21am1a12a22am2a1sa2sams
     B=

b11b21bs1b12b22bs2b1nb2nbsn
两者的点积,即矩阵相乘的结果 C = A B C=AB C=AB m × n m\times n m×n阶矩阵,
C = A B = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋯ ⋯ ⋱ ⋮ c m 1 c m 2 ⋯ c m n ] C=AB=\left[ \begin{matrix} {
{c}_{11}} & {
{c}_{12}} & \cdots & {
{c}_{1n}} \\ {
{c}_{21}} & {
{c}_{22}} & \cdots & {
{c}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {
{c}_{m1}} & {
{c}_{m2}} & \cdots & {
{c}_{mn}} \\ \end{matrix} \right]
C=AB=
c11c21cm1c12c22cm2c1nc2ncmn
其中,矩阵 C C C中的元素满足 c i j = ∑ k = 1 s a i k b k j {
{c}_{ij}}=\sum_{k=1}^{s}{
{a}_{ik}}{
{b}_{kj}}
cij=k=1saikbkj
举例 A 1 = [ 1 2 3 4 ]          B 1 = [ 5 6 7 8 ] ,          A 2 = [ 1 2 3 1 2 3 ]          B 2 = [ 1 2 3 ]          A_1 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;\;\;\; B_1 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix}, \;\;\;\; A_2 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;\;\;\; B_2 = \begin{bmatrix}1\\2\\3 \end{bmatrix} \;\;\;\; A1=[1324]B1=[5768]A2=[112233]B2=
123
A 1 B 1 = [ 19 22 43 50 ] ,          A 2 B 2 = [ 14 14 ] A_1B_1 = \begin{bmatrix}19 & 22 \\43 & 50\end{bmatrix}, \;\;\;\; A_2B_2 = \begin{bmatrix}14&14\end{bmatrix} A1B1=[19432250]A2B2=[1414]numpy实现

import numpy as np A1 = np.array([[1,2],[3,4]]) B2 = np.array([[5,6],[7,8]]) A2 = np.array([[1,2,3],[1,2,3]]) B2 = np.array([1,2,3])  数量积 使用np.dot print(np.dot(A1,B1)) print(np.dot(A2,B2)) 

此外,numpyt提供了numpy.inner()函数,从字面意思理解是内积,其针对向量numpy.inner()numpy.dot()输出一致,但针对矩阵有所不同。

print(np.inner(A1,B1)) 

输出为 [ 17 23 39 53 ] \begin{bmatrix}17 & 23 \\39 & 53\end{bmatrix} [17392353]
其中, 17 = 1 × 5 + 2 × 6 , 23 = 1 × 7 + 2 × 8 17=1 \times 5 +2\times 6,23 = 1\times 7 +2\times 8 17=1×5+2×623=1×7+2×8 39 = 3 × 5 + 4 × 6 , 53 = 3 × 7 + 4 × 8 39 = 3\times 5 +4\times 6,53=3\times7 +4\times 8 39=3×5+4×653=3×7+4×8

print(np.inner(A2,B2)) 

输出为 [ 14 14 ] \begin{bmatrix}14&14\end{bmatrix} [1414]

2.2 矩阵的叉积

针对矩阵并不存在叉积的概念,numpy中针对矩阵的叉积运算是按照向量的叉积进行运算。

举例
A 1 = [ 1 2 3 4 ]          B 1 = [ 5 6 7 8 ] ,          A 2 = [ 1 2 3 1 2 3 ]          B 2 = [ 1 2 3 ]          A_1 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;\;\;\; B_1 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix}, \;\;\;\; A_2 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;\;\;\; B_2 = \begin{bmatrix}1\\2\\3 \end{bmatrix} \;\;\;\; A1=[1324]B1=[5768]A2=[112233]B2=
123
A 1 × B 1 = [ − 4 − 4 ] ,          A 2 × B 2 = [ 0 0 0 0 0 0 ] A_1 \times B_1 = \begin{bmatrix}-4&-4\end{bmatrix}, \;\;\;\; A_2 \times B_2 = \begin{bmatrix}0 & 0&0 \\0 & 0&0\end{bmatrix} A1×B1=[44]A2×B2=[000000]numpy实现

import numpy as np A1 = np.array([[1,2],[3,4]]) B1 = np.array([[5,6],[7,8]]) A2 = np.array([[1,2,3],[1,2,3]]) B2 = np.array([1,2,3])  叉积 使用np.cross print(np.cross(A1,B1)) print(np.cross(A2,B2)) 

3. 元素积

元素积(element-wise product, point-wise product)又称哈达玛积(Hadamard product )舒尔积逐项积,对应元素相乘,结果还是向量/矩阵。

对于 n n n维向量 a ⃗ = ( a 1 , a 1 , . . . , a n )  , b ⃗ = ( b 1 , b 2 , . . . , b n ) \vec{a}=\left( {
{a}_{1}},{
{a}_{1}},…, {
{a}_{n}} \right)~,\vec{b}=\left( {
{b}_{1}},{
{b}_{2}} ,…,{
{b}_{n}}\right)
a
=
(a1,a1,,an) b
=
(b1,b2,,bn)
,两者的元素积: a ⃗ ∗ b ⃗ = ( a 1 b 1 , a 2 b 2 , . . . , a n b n ) \vec{a} * \vec{b}= ({
{a}_{1}{b}_{1}},{
{a}_{2}}{
{b}_{2}},…,{
{a}_{n}}{
{b}_{n}} )
a
b
=
(a1b1,a2b2,,anbn)
对于同阶矩阵( m × n m \times n m×n A A A B B B,两者的哈达玛(Hadamard)积: A ∘ B = [ a 11 b 11 a 12 b 12 ⋯ a 1 n b 1 n a 21 b 21 a 22 b 22 ⋯ a 2 n b 2 n ⋯ ⋯ ⋱ ⋮ a m 1 b m 1 a m 2 b m 2 ⋯ a m n b m n ] A \circ B = \left[ \begin{matrix} {
{a}_{11}{b}_{11}} & {
{a}_{12}{b}_{12}} & \cdots & {
{a}_{1n}{b}_{1n}} \\ {
{a}_{21}{b}_{21}} & {
{a}_{22}{b}_{22}} & \cdots & {
{a}_{2n}{b}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {
{a}_{m1}{b}_{m1}} & {
{a}_{m2}{b}_{m2}} & \cdots & {
{a}_{mn}{b}_{mn}} \\ \end{matrix} \right]
AB=
a11b11a21b21am1bm1a12b12a22b22am2bm2a1nb1na2nb2namnbmn

numpy中 使用np.multiply*实现元素积

举例

向量 a ⃗ = ( 1 , 2 , 3 )          b ⃗ = ( 4 , 5 , 6 ) \vec{a} = (1,2,3) \;\;\;\; \vec{b} = (4,5,6) a
=
(1,2,3)b
=
(4,5,6)
a ⃗ ∘ b ⃗ = ( 4 , 10 , 18 ) \vec{a} \circ \vec{b} =(4 , 10 , 18) a
b
=
(4,10,18)
矩阵 A 1 = [ 1 2 3 4 ]          B 1 = [ 5 6 7 8 ] ,          A 2 = [ 1 2 3 1 2 3 ]          B 2 = [ 1 2 3 ]          A_1 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;\;\;\; B_1 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix}, \;\;\;\; A_2 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;\;\;\; B_2 = \begin{bmatrix}1\\2\\3 \end{bmatrix} \;\;\;\; A1=[1324]B1=[5768]A2=[112233]B2=
123
A 1 ∘ B 1 = [ 5 12 21 32 ] ,          A 2 ∘ B 2 = [ 1 4 9 1 4 9 ]          A_1 \circ B_1 = \begin{bmatrix}5 & 12 \\21 & 32\end{bmatrix}, \;\;\;\; A_2 \circ B_2 = \begin{bmatrix}1 & 4 & 9\\1 & 4 & 9\end{bmatrix}\;\;\;\; A1B1=[5211232]A2B2=[114499]

import numpy as np a = np.array([1,2,3]) b = np.array([4,5,6]) A1 = np.array([[1,2],[3,4]]) B1 = np.array([[5,6],[7,8]]) A2 = np.array([[1,2,3],[1,2,3]]) B2 = np.array([1,2,3])  数量积 使用np.multiply或* print(np.multiply(a,b)) print(np.multiply(A1,B1)) print(np.multiply(A2,B2)) #阶数不一致的,numpy将进行广播确保一致 

4. 克罗内克积

克罗内克积(Kronecker product)是两个任意大小的矩阵间的运算

对于对于 A A A矩阵( m × n m \times n m×n阶), B B B矩阵( p × q p \times q p×q阶): A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ]       B = [ b 11 b 12 ⋯ b 1 q b 21 b 22 ⋯ b 2 q ⋯ ⋯ ⋱ ⋮ b p 1 b p 2 ⋯ b p q ] A=\left[ \begin{matrix} {
{a}_{11}} & {
{a}_{12}} & \cdots & {
{a}_{1n}} \\ {
{a}_{21}} & {
{a}_{22}} & \cdots & {
{a}_{2n}} \\ \cdots & \cdots & \ddots & \vdots \\ {
{a}_{m1}} & {
{a}_{m2}} & \cdots & {
{a}_{mn}} \\ \end{matrix} \right]~~~~~B=\left[ \begin{matrix} {
{b}_{11}} & {
{b}_{12}} & \cdots & {
{b}_{1q}} \\ {
{b}_{21}} & {
{b}_{22}} & \cdots & {
{b}_{2q}} \\ \cdots & \cdots & \ddots & \vdots \\ {
{b}_{p1}} & {
{b}_{p2}} & \cdots & {
{b}_{pq}} \\ \end{matrix} \right]
A=
a11a21am1a12a22am2a1na2namn
     B=

b11b21bp1b12b22bp2b1qb2qbpq
两者的克罗内克积 C = A ⊗ B C=A \otimes B C=AB m p × n q mp×nq mp×nq阶的分块矩阵: C = A ⊗ B = [ a 11 B a 12 B ⋯ a 1 n B a 21 B a 22 B ⋯ a 2 n B ⋯ ⋯ ⋱ ⋮ a m 1 B a m 2 B ⋯ a m n B ] C=A \otimes B = \left[ \begin{matrix} {
{a}_{11}B} & {
{a}_{12}B} & \cdots & {
{a}_{1n}} B \\ {
{a}_{21}} B& {
{a}_{22}}B & \cdots & {
{a}_{2n}} B \\ \cdots & \cdots & \ddots & \vdots \\ {
{a}_{m1}} B& {
{a}_{m2}} B& \cdots & {
{a}_{mn}}B \\ \end{matrix} \right]
C=AB=
a11Ba21Bam1Ba12Ba22Bam2Ba1nBa2nBamnB
= [ a 11 b 11 a 11 b 12 ⋯ a 11 b 1 q ⋯ ⋯ a 1 n b 11 a 1 n b 12 ⋯ a 1 n b 1 q a 11 b 21 a 11 b 22 ⋯ a 11 b 2 q ⋯ ⋯ a 1 n b 21 a 1 n b 22 ⋯ a 1 n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a 11 b p 1 a 11 b p 2 ⋯ a 11 b p q ⋯ ⋯ a 1 n b p 1 a 1 n b p 2 ⋯ a 1 n b p q ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ a m 1 b 11 a m 1 b 12 ⋯ a m 1 b 1 q ⋯ ⋯ a m n b 11 a m n b 12 ⋯ a m n b 1 q a m 1 b 21 a m 1 b 22 ⋯ a m 1 b 2 q ⋯ ⋯ a m n b 21 a m n b 22 ⋯ a m n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a m 1 b p 1 a m 1 b p 2 ⋯ a m 1 b p q ⋯ ⋯ a m n b p 1 a m n b p 2 ⋯ a m n b p q ] =\left[ \begin{matrix} {
{a}_{11}{b}_{11}} & {
{a}_{11}{b}_{12}} & \cdots & {
{a}_{11}} {b}_{1q} & \cdots & \cdots &{
{a}_{1n}{b}_{11}} & {
{a}_{1n}{b}_{12}} & \cdots & {
{a}_{1n}} {b}_{1q} \\ {
{a}_{11}{b}_{21}} & {
{a}_{11}{b}_{22}} & \cdots & {
{a}_{11}} {b}_{2q} & \cdots & \cdots &{
{a}_{1n}{b}_{21}} & {
{a}_{1n}{b}_{22}} & \cdots & {
{a}_{1n}} {b}_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ {
{a}_{11}{b}_{p1}} & {
{a}_{11}{b}_{p2}} & \cdots & {
{a}_{11}} {b}_{pq} & \cdots & \cdots &{
{a}_{1n}{b}_{p1}} & {
{a}_{1n}{b}_{p2}} & \cdots & {
{a}_{1n}} {b}_{pq} \\ \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\ {
{a}_{m1}{b}_{11}} & {
{a}_{m1}{b}_{12}} & \cdots & {
{a}_{m1}} {b}_{1q} & \cdots & \cdots &{
{a}_{mn}{b}_{11}} & {
{a}_{mn}{b}_{12}} & \cdots & {
{a}_{mn}} {b}_{1q} \\ {
{a}_{m1}{b}_{21}} & {
{a}_{m1}{b}_{22}} & \cdots & {
{a}_{m1}} {b}_{2q} & \cdots & \cdots &{
{a}_{mn}{b}_{21}} & {
{a}_{mn}{b}_{22}} & \cdots & {
{a}_{mn}} {b}_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ {
{a}_{m1}{b}_{p1}} & {
{a}_{m1}{b}_{p2}} & \cdots & {
{a}_{m1}} {b}_{pq} & \cdots & \cdots &{
{a}_{mn}{b}_{p1}} & {
{a}_{mn}{b}_{p2}} & \cdots & {
{a}_{mn}} {b}_{pq} \\ \end{matrix} \right]
=
a11b11a11b21a11bp1am1b11am1b21am1bp1a11b12a11b22a11bp2am1b12am1b22am1bp2a11b1qa11b2qa11bpqam1b1qam1b2qam1bpqa1nb11a1nb21a1nbp1amnb11amnb21amnbp1a1nb12a1nb22a1nbp2amnb12amnb22amnbp2a1nb1qa1nb2qa1nbpqamnb1qamnb2qamnbpq

numpy中 使用np.kron实现

举例 A 1 = [ 1 2 3 ]    B 1 = [ 4 5 6 ]    A 2 = [ 1 2 3 4 ]    B 2 = [ 5 6 7 8 ]    A 3 = [ 1 2 3 1 2 3 ]    B 3 = [ 1 2 3 ] A_1 = \begin{bmatrix}1 \\ 2\\ 3 \end{bmatrix}\;B_1 = \begin{bmatrix}4\\5\\6 \end{bmatrix} \;A_2 = \begin{bmatrix}1 & 2 \\3 & 4\end{bmatrix}\;B_2 = \begin{bmatrix}5 & 6 \\7 & 8\end{bmatrix} \; A_3 = \begin{bmatrix}1 & 2 & 3\\1 & 2 & 3\end{bmatrix}\;B_3 = \begin{bmatrix}1\\2\\3 \end{bmatrix} A1=
123
B1=

456
A2=
[1324]B2=[5768]A3=[112233]B3=
123
A 1 ⊗ B 1 = [ 4 5 6 8 10 12 12 15 18 ] T A_1 \otimes B_1={\begin{bmatrix}4 & 5 & 6 & 8 &10 & 12 & 12 & 15&18\end{bmatrix}}^T A1B1=[45681012121518]T A 2 ⊗ B 2 = [ 5 6 10 12 7 8 14 16 15 18 20 24 21 24 28 32 ] A_2 \otimes B_2 = \begin{bmatrix}5 &6&10&12 \\7 & 8&14&16\\15 & 18&20&24 \\21 &24&28&32\end{bmatrix} A2B2=
5715216818241014202812162432
A 3 ⊗ B 3 = [ 1 2 3 2 4 6 3 6 9 1 2 3 2 4 6 3 6 9 ] T A_3\otimes B_3 = { \begin{bmatrix}1 & 2&3 &2&4&6&3&6 & 9\\1 & 2&3 &2&4&6&3&6 & 9\end{bmatrix}}^T A3B3=[112233224466336699]T

import numpy as np A1 = np.array([1,2,3]) B1 = np.array([4,5,6]) A2 = np.array([[1,2],[3,4]]) B2 = np.array([[5,6],[7,8]]) A3 = np.array([[1,2,3],[1,2,3]]) B3 = np.array([1,2,3])  克罗内克积 使用np.kron print(np.kron(A1,B1)) print(np.kron(A2,B2)) print(np.kron(A3,B3)) 

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/130250.html

(0)
上一篇 2025-08-18 16:15
下一篇 2025-08-18 16:20

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信