大家好,欢迎来到IT知识分享网。
上一篇的方法似乎是错误的,不过倒是挺利于记忆的。
这一篇用于记录一下个人在极坐标求导中经常犯错/不会的地方。
习题:
设 f ( z ) = u ( r , φ ) + i v ( r , φ ) ( z = r e i φ ) f(z)=u(r,\varphi)+\text{i}v(r,\varphi)\:(z=re^{\mathrm{i}\varphi}) f(z)=u(r,φ)+iv(r,φ)(z=reiφ) 推导极坐标系下的 C − R C-R C−R 条件。
x = r cos φ , y = r sin φ , r = x 2 + y 2 , φ = arctan y x . \begin{aligned}x&=r\cos\varphi,\:y=r\sin\varphi,\\r&=\sqrt{x^2+y^2},\:\varphi=\arctan\frac{y}{x}.\end{aligned} xr=rcosφ,y=rsinφ,=x2+y2,φ=arctanxy.
则有
∂ r ∂ x = x x 2 + y 2 = x r = cos φ , ∂ r ∂ y = y x 2 + y 2 = y r = sin φ ∂ φ ∂ x = − y x 2 1 + ( y x ) 2 = − y r 2 = − sin φ r , ∂ φ ∂ x = 1 x 1 + ( y x ) 2 = x r 2 = cos φ r . \begin{aligned}\frac{\partial r}{\partial x}&=\frac{x}{\sqrt{x^2+y^2}}=\frac{x}{r}=\cos\varphi,\quad\frac{\partial r}{\partial y}=\frac{y}{\sqrt{x^2+y^2}}=\frac{y}{r}=\sin\varphi\\\frac{\partial\varphi}{\partial x}&=\frac{-\frac{y}{x^2}}{1+\left(\frac{y}{x}\right)^2}=\frac{-y}{r^2}=-\frac{\sin\varphi}{r},\quad\frac{\partial\varphi}{\partial x}=\frac{\frac{1}{x}}{1+\left(\frac{y}{x}\right)^2}=\frac{x}{r^2}=\frac{\cos\varphi}{r}.\end{aligned} ∂x∂r∂x∂φ=x2+y2x=rx=cosφ,∂y∂r=x2+y2y=ry=sinφ=1+(xy)2−x2y=r2−y=−rsinφ,∂x∂φ=1+(xy)2x1=r2x=rcosφ.
上面这里就是误区所在
比如求 ∂ r ∂ x \frac{\partial r}{\partial x} ∂x∂r 的时候,不能使用关系式 x = r cos θ → r = x cos θ x=r\cos \theta\rightarrow r=\frac{x}{\cos \theta} x=rcosθ→r=cosθx 来计算。因为 cos θ \cos \theta cosθ 和 x x x 看似不相干,是相互独立的,但实际上却不是。所以求导的时候,应该回归到 x x x 和 y y y 这两个变量上面来,这两变量是完全独立的。
∂ u ∂ x = ∂ u ∂ r ∂ r ∂ x + ∂ u ∂ φ ∂ φ ∂ x = cos φ ∂ u ∂ r − sin φ r ∂ u ∂ φ , ∂ u ∂ y = ∂ u ∂ r ∂ r ∂ y + ∂ u ∂ φ = sin φ ∂ u ∂ r + cos φ r ∂ u ∂ φ , ∂ v ∂ x = ∂ v ∂ r ∂ r ∂ x + ∂ v ∂ φ ∂ φ ∂ x = cos φ ∂ v ∂ r − sin φ r ∂ v ∂ φ , ∂ v ∂ y = ∂ v ∂ r ∂ r ∂ y + ∂ v ∂ φ ∂ φ ∂ y = sin φ ∂ v ∂ r + cos φ r ∂ v ∂ φ . \begin{aligned}\frac{\partial u}{\partial x}&=\frac{\partial u}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial u}{\partial\varphi}\frac{\partial\varphi}{\partial x}=\cos\varphi\:\frac{\partial u}{\partial r}-\frac{\sin\varphi}{r}\:\frac{\partial u}{\partial\varphi},\quad\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial u}{\partial\varphi}=\sin\varphi\:\frac{\partial u}{\partial r}+\frac{\cos\varphi}{r}\:\frac{\partial u}{\partial\varphi},\\\frac{\partial v}{\partial x}&=\frac{\partial v}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial v}{\partial\varphi}\frac{\partial\varphi}{\partial x}=\cos\varphi\:\frac{\partial v}{\partial r}-\frac{\sin\varphi}{r}\:\frac{\partial v}{\partial\varphi},\quad\frac{\partial v}{\partial y}=\frac{\partial v}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial v}{\partial\varphi}\frac{\partial\varphi}{\partial y}=\sin\varphi\:\frac{\partial v}{\partial r}+\frac{\cos\varphi}{r}\frac{\partial v}{\partial\varphi}.\end{aligned} ∂x∂u∂x∂v=∂r∂u∂x∂r+∂φ∂u∂x∂φ=cosφ∂r∂u−rsinφ∂φ∂u,∂y∂u=∂r∂u∂y∂r+∂φ∂u=sinφ∂r∂u+rcosφ∂φ∂u,=∂r∂v∂x∂r+∂φ∂v∂x∂φ=cosφ∂r∂v−rsinφ∂φ∂v,∂y∂v=∂r∂v∂y∂r+∂φ∂v∂y∂φ=sinφ∂r∂v+rcosφ∂φ∂v.
结合直角坐标系中的 C − R C-R C−R 条件:
∂ u ∂ x = ∂ v ∂ y , ∂ v ∂ x = − ∂ u ∂ y , \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\quad\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}, ∂x∂u=∂y∂v,∂x∂v=−∂y∂u,
得
cos φ ∂ u ∂ r − sin φ r ∂ u ∂ φ = sin φ ∂ v ∂ r + cos φ r ∂ v ∂ φ , (1.1) sin φ ∂ u ∂ r + cos φ r ∂ u ∂ φ = − cos φ ∂ v ∂ r + sin φ r ∂ v ∂ φ . (1.2) \begin{aligned}\cos\varphi\:\frac{\partial u}{\partial r}-\frac{\sin\varphi}{r}\:\frac{\partial u}{\partial\varphi}&=\sin\varphi\:\frac{\partial v}{\partial r}+\frac{\cos\varphi}{r}\:\frac{\partial v}{\partial\varphi},&\text{(1.1)}\\\sin\varphi\:\frac{\partial u}{\partial r}+\frac{\cos\varphi}{r}\:\frac{\partial u}{\partial\varphi}&=-\cos\varphi\:\frac{\partial v}{\partial r}+\frac{\sin\varphi}{r}\:\frac{\partial v}{\partial\varphi}.&\text{(1.2)}\end{aligned} cosφ∂r∂u−rsinφ∂φ∂usinφ∂r∂u+rcosφ∂φ∂u=sinφ∂r∂v+rcosφ∂φ∂v,=−cosφ∂r∂v+rsinφ∂φ∂v.(1.1)(1.2)
考虑 ( 1.1 ) × cos φ + ( 1.2 ) × sin φ (1.1)\times\cos\varphi+(1.2)\times\sin\varphi (1.1)×cosφ+(1.2)×sinφ 和 ( 1.1 ) × sin φ − ( 1.2 ) × cos φ (1.1)\times\sin\varphi-(1.2)\times\cos\varphi (1.1)×sinφ−(1.2)×cosφ,得到
∂ u ∂ r = 1 r ∂ v ∂ φ , ∂ u ∂ φ = − r ∂ v ∂ r . \frac{\partial u}{\partial r}=\frac1r\frac{\partial v}{\partial\varphi},\quad\frac{\partial u}{\partial\varphi}=-r\frac{\partial v}{\partial r}. ∂r∂u=r1∂φ∂v,∂φ∂u=−r∂r∂v.
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/133337.html