极坐标求导中的误区(个人向)&C-R条件极坐标表示

极坐标求导中的误区(个人向)&C-R条件极坐标表示的方法似乎是错误的 不过倒是挺利于记忆的

大家好,欢迎来到IT知识分享网。

上一篇的方法似乎是错误的,不过倒是挺利于记忆的。

这一篇用于记录一下个人在极坐标求导中经常犯错/不会的地方。

习题:

f ( z ) = u ( r , φ ) + i v ( r , φ )   ( z = r e i φ ) f(z)=u(r,\varphi)+\text{i}v(r,\varphi)\:(z=re^{\mathrm{i}\varphi}) f(z)=u(r,φ)+iv(r,φ)(z=reiφ) 推导极坐标系下的 C − R C-R CR 条件。
x = r cos ⁡ φ ,   y = r sin ⁡ φ , r = x 2 + y 2 ,   φ = arctan ⁡ y x . \begin{aligned}x&=r\cos\varphi,\:y=r\sin\varphi,\\r&=\sqrt{x^2+y^2},\:\varphi=\arctan\frac{y}{x}.\end{aligned} xr=rcosφ,y=rsinφ,=x2+y2
,φ=arctanxy.

则有
∂ r ∂ x = x x 2 + y 2 = x r = cos ⁡ φ , ∂ r ∂ y = y x 2 + y 2 = y r = sin ⁡ φ ∂ φ ∂ x = − y x 2 1 + ( y x ) 2 = − y r 2 = − sin ⁡ φ r , ∂ φ ∂ x = 1 x 1 + ( y x ) 2 = x r 2 = cos ⁡ φ r . \begin{aligned}\frac{\partial r}{\partial x}&=\frac{x}{\sqrt{x^2+y^2}}=\frac{x}{r}=\cos\varphi,\quad\frac{\partial r}{\partial y}=\frac{y}{\sqrt{x^2+y^2}}=\frac{y}{r}=\sin\varphi\\\frac{\partial\varphi}{\partial x}&=\frac{-\frac{y}{x^2}}{1+\left(\frac{y}{x}\right)^2}=\frac{-y}{r^2}=-\frac{\sin\varphi}{r},\quad\frac{\partial\varphi}{\partial x}=\frac{\frac{1}{x}}{1+\left(\frac{y}{x}\right)^2}=\frac{x}{r^2}=\frac{\cos\varphi}{r}.\end{aligned} xrxφ=x2+y2
x
=rx=cosφ,yr=x2+y2
y
=ry=sinφ
=1+(xy)2x2y=r2y=rsinφ,xφ=1+(xy)2x1=r2x=rcosφ.

上面这里就是误区所在



比如求 ∂ r ∂ x \frac{\partial r}{\partial x} xr 的时候,不能使用关系式 x = r cos ⁡ θ → r = x cos ⁡ θ x=r\cos \theta\rightarrow r=\frac{x}{\cos \theta} x=rcosθr=cosθx 来计算。因为 cos ⁡ θ \cos \theta cosθ x x x 看似不相干,是相互独立的,但实际上却不是。所以求导的时候,应该回归到 x x x y y y 这两个变量上面来,这两变量是完全独立的。

∂ u ∂ x = ∂ u ∂ r ∂ r ∂ x + ∂ u ∂ φ ∂ φ ∂ x = cos ⁡ φ   ∂ u ∂ r − sin ⁡ φ r   ∂ u ∂ φ , ∂ u ∂ y = ∂ u ∂ r ∂ r ∂ y + ∂ u ∂ φ = sin ⁡ φ   ∂ u ∂ r + cos ⁡ φ r   ∂ u ∂ φ , ∂ v ∂ x = ∂ v ∂ r ∂ r ∂ x + ∂ v ∂ φ ∂ φ ∂ x = cos ⁡ φ   ∂ v ∂ r − sin ⁡ φ r   ∂ v ∂ φ , ∂ v ∂ y = ∂ v ∂ r ∂ r ∂ y + ∂ v ∂ φ ∂ φ ∂ y = sin ⁡ φ   ∂ v ∂ r + cos ⁡ φ r ∂ v ∂ φ . \begin{aligned}\frac{\partial u}{\partial x}&=\frac{\partial u}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial u}{\partial\varphi}\frac{\partial\varphi}{\partial x}=\cos\varphi\:\frac{\partial u}{\partial r}-\frac{\sin\varphi}{r}\:\frac{\partial u}{\partial\varphi},\quad\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial u}{\partial\varphi}=\sin\varphi\:\frac{\partial u}{\partial r}+\frac{\cos\varphi}{r}\:\frac{\partial u}{\partial\varphi},\\\frac{\partial v}{\partial x}&=\frac{\partial v}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial v}{\partial\varphi}\frac{\partial\varphi}{\partial x}=\cos\varphi\:\frac{\partial v}{\partial r}-\frac{\sin\varphi}{r}\:\frac{\partial v}{\partial\varphi},\quad\frac{\partial v}{\partial y}=\frac{\partial v}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial v}{\partial\varphi}\frac{\partial\varphi}{\partial y}=\sin\varphi\:\frac{\partial v}{\partial r}+\frac{\cos\varphi}{r}\frac{\partial v}{\partial\varphi}.\end{aligned} xuxv=ruxr+φuxφ=cosφrursinφφu,yu=ruyr+φu=sinφru+rcosφφu,=rvxr+φvxφ=cosφrvrsinφφv,yv=rvyr+φvyφ=sinφrv+rcosφφv.
结合直角坐标系中的 C − R C-R CR 条件:
∂ u ∂ x = ∂ v ∂ y , ∂ v ∂ x = − ∂ u ∂ y , \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\quad\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}, xu=yv,xv=yu,

cos ⁡ φ   ∂ u ∂ r − sin ⁡ φ r   ∂ u ∂ φ = sin ⁡ φ   ∂ v ∂ r + cos ⁡ φ r   ∂ v ∂ φ , (1.1) sin ⁡ φ   ∂ u ∂ r + cos ⁡ φ r   ∂ u ∂ φ = − cos ⁡ φ   ∂ v ∂ r + sin ⁡ φ r   ∂ v ∂ φ . (1.2) \begin{aligned}\cos\varphi\:\frac{\partial u}{\partial r}-\frac{\sin\varphi}{r}\:\frac{\partial u}{\partial\varphi}&=\sin\varphi\:\frac{\partial v}{\partial r}+\frac{\cos\varphi}{r}\:\frac{\partial v}{\partial\varphi},&\text{(1.1)}\\\sin\varphi\:\frac{\partial u}{\partial r}+\frac{\cos\varphi}{r}\:\frac{\partial u}{\partial\varphi}&=-\cos\varphi\:\frac{\partial v}{\partial r}+\frac{\sin\varphi}{r}\:\frac{\partial v}{\partial\varphi}.&\text{(1.2)}\end{aligned} cosφrursinφφusinφru+rcosφφu=sinφrv+rcosφφv,=cosφrv+rsinφφv.(1.1)(1.2)
考虑 ( 1.1 ) × cos ⁡ φ + ( 1.2 ) × sin ⁡ φ (1.1)\times\cos\varphi+(1.2)\times\sin\varphi (1.1)×cosφ+(1.2)×sinφ ( 1.1 ) × sin ⁡ φ − ( 1.2 ) × cos ⁡ φ (1.1)\times\sin\varphi-(1.2)\times\cos\varphi (1.1)×sinφ(1.2)×cosφ,得到
∂ u ∂ r = 1 r ∂ v ∂ φ , ∂ u ∂ φ = − r ∂ v ∂ r . \frac{\partial u}{\partial r}=\frac1r\frac{\partial v}{\partial\varphi},\quad\frac{\partial u}{\partial\varphi}=-r\frac{\partial v}{\partial r}. ru=r1φv,φu=rrv.





免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://haidsoft.com/133337.html

(0)
上一篇 2025-07-24 14:15
下一篇 2025-07-24 14:20

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信